Lyme disease is a serious vector-borne infection that is caused by the Borrelia burgdorferi sensu lato family of spirochetes, which are transmitted to humans through the bite of infected Ixodes ticks. The primary etiological agent in North America is Borrelia burgdorferi sensu stricto. As geographic risk regions expand, it is prudent to support robust surveillance programs that can measure tick infection rates, and communicate findings to clinicians, veterinarians, and the general public. The molecular technique of nested polymerase chain reaction (nPCR) has long been used for this purpose, and it remains a central, inexpensive, and robust approach in the detection of Borrelia in both ticks and wildlife. This article demonstrates the application of nPCR to tick DNA extracts to identify infected specimens. Two independent B. burgdorferi targets, genes encoding Flagellin B (FlaB) and Outer surface protein A (OspA), have been used extensively with this technique. The protocol involves tick collection, DNA extraction, and then an initial round of PCR to detect each of the two Borrelia-specific loci. Subsequent polymerase chain reaction (PCR) uses the product of the first reaction as a new template to generate smaller, internal amplification fragments. The nested approach improves upon both the specificity and sensitivity of conventional PCR. A tick is considered positive for the pathogen when inner amplicons from both Borrelia genes can be detected by agarose gel electrophoresis.
Ticks are vectors of many diseases, including Lyme disease (Ld). Lyme disease is an emerging disease in Canada caused by infection with the Lyme borreliosis (Lb) members of the Borrelia genus of spirochaete bacteria, of which Borrelia burgdorferi is regionally the most prevalent. The primary tick vector in central and eastern Canada, Ixodes scapularis, is increasing in numbers and in the geographical extent of established populations. This study documents the distribution of ticks recovered by passive surveillance, and their B. burgdorferi infection prevalence, in three Canadian Maritime provinces from 2012–2020. These regions represent areas in which tick populations are widely established, establishing, and considered non-established. Using a community science approach by partnering with veterinarians and members of the public, we collected over 7000 ticks from the 3 provinces. The three species found most often on companion animals and humans were I. scapularis (76.9%), Ixodes cookei (10.4%) and Dermacentor variabilis (8.9%). The most common hosts were dogs (60.5%), cats (16.8%) and humans (17.6%). As is typical of passive surveillance tick collections, the majority of ticks recovered were adult females; for I. scapularis 90.2%, 5.3%, 3.9% and 0.6% of the total of 5630 ticks recovered for this species were adult females, adult males, nymphs and larvae, respectively. The majority of B. burgdorferi-infected ticks were I. scapularis, as expected. Borrelia infection prevalence in I scapularis was higher in Nova Scotia (20.9%), the province with the most endemic regions, than New Brunswick (14.1%) and Prince Edward Island (9.1%), provinces thought to have established and non-established tick populations, respectively. The province-wide Borrelia infection prevalence generally increased in these latter tow provinces over the course of the study. The host did not have a significant effect on B. burgdorferi infection prevalence; I. scapularis ticks from dogs, cats, humans was, 13.3% (n = 3622), 15.6% (n = 817), 17.9% (n = 730), respectively. No I. scapularis larvae were found infected (n = 33) but B. burgdorferi was detected in 14.8% of both adults (n = 5140) and nymphs (n = 215). The incidence of B. burgdorferi infection also did not differ by engorgement status 15.0% (n = 367), 15.1% (n = 3101) and 14.4% (n = 1958) of non-engorged, engorged and highly engorged ticks, respectively, were infected. In New Brunswick, at the advancing front of tick population establishment, the province-wide infection percentages generally increased over the nine-year study period and all health district regions showed increased tick recoveries and a trend of increased percentages of Borrelia-infected ticks over the course of the study. Within New Brunswick, tick recoveries but not Borrelia infection prevalence were significantly different from endemic and non-endemic regions, suggesting cryptic endemic regions existed prior to their designation as a risk area. Over the 9 years of the study, tick recoveries increased in New Brunswick, the primary study region, and I. scapularis recoveries spread northwards and along the coast, most but not all new sites of recoveries were predicted by climate-based models, indicating that ongoing tick surveillance is necessary to accurately detect all areas of risk. Comparison of tick recoveries and public health risk areas indicates a lag in identification of risk areas. Accurate and timely information on tick distribution and the incidence of Borrelia and other infections are essential for keeping the public informed of risk and to support disease prevention behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.