Chemical cytometry employs modern analytical methods to study the differences in composition between single cells to better understand development, cellular differentiation, and disease. Metabolic cytometry is a form of chemical cytometry wherein cells are incubated with and allowed to metabolize fluorescently labeled small molecules. Capillary electrophoresis with laser-induced fluorescence detection is then used to characterize the extent of metabolism at the single cell level. To date, all metabolic cytometry experiments have used conventional two-dimensional cell cultures. HCT 116 spheroids are a three-dimensional cell culture system, morphologically and phenotypically similar to tumors. Here, intact HCT 116 multicellular spheroids were simultaneously incubated with three fluorescently labeled glycosphingolipid substrates, GM3-BODIPY-FL, GM1-BODIPY-TMR, and lactosylceramide-BODIPY-650/665. These substrates are spectrally distinct, and their use allows the simultaneous probing of metabolism at three different points in the glycolipid metabolic cascade. Beginning with intact spheroids, a serial trypsinization and trituration procedure was used to isolate single cells from spatially distinct regions of the spheroid. Cells from the distinct regions showed unique metabolic patterns. Treatment with the lysosomal inhibitor and potential chemotherapeutic chloroquine consistently decreased catabolism for all substrates. Nearly 200 cells were taken for analysis. Principal component analysis with a multivariate measure of precision was used to quantify cell-to-cell variability in glycosphingolipid metabolism as a function of cellular localization and chloroquine treatment. While cells from different regions exhibited differences in metabolism, the heterogeneity in metabolism did not differ significantly across the experimental conditions.
A capillary electrophoresis system with ultrasensitive two-color laser-induced fluorescence detection was used to probe the effect of ionic strength on single cell separations of glycosphingolipids. Differentiated PC12 cells were incubated with two ganglioside substrates tagged with different fluorophores within the BODIPY family such that two distinct metabolic patterns could be simultaneously monitored. Aspiration of single differentiated PC12 cells suspended in a phosphate-buffered saline solution showed excessive peak dispersion, poor resolution, and peak efficiencies below 100,000 theoretical plates. Aspiration of single differentiated PC12 cells suspended in deionized water corrected peak dispersion. Average peak efficiencies ranged between 400,000 and 600,000 theoretical plates. Improved performance was due to the dilution of the high salt concentrations inside of single neuronal-like cells to produce field amplified sample stacking. Single cell separations showed the highest resolution when aspiration of single differentiated PC12 cells suspended in deionized water were separated using a running buffer of high ionic strength. The improvement in resolution allowed for the identification of analytes not previously detected in single cell metabolism studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.