Dry eye disease is one of the most common ophthalmological complaints and is defined by a loss of tear film homeostasis. Establishing a diagnosis can be time-consuming, resource demanding and unpleasant for the patient. In this pilot study, we retrospectively included clinical data from 431 patients with dry eye disease examined in the Norwegian Dry Eye Clinic to evaluate how artificial intelligence algorithms perform on clinical data related to dry eye disease. The data was processed and subjected to numerous machine learning classification algorithms with the aim to predict decreased tear film break-up time. Moreover, feature selection techniques (information gain and information gain ratio) were applied to determine which clinical factors contribute most to an unstable tear film. The applied machine learning algorithms outperformed baseline classifications performed with ZeroR according to included evaluation metrics. Clinical features such as ocular surface staining, meibomian gland expressibility and dropout, blink frequency, osmolarity, meibum quality and symptom score were recognized as important predictors for tear film instability. We identify and discuss potential limitations and pitfalls.
Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer. Developing computer-aided diagnosis (CAD) systems to detect polyps can improve detection accuracy and efficiency and save the time of the domain experts called endoscopists. Lack of annotated data is a common challenge when building CAD systems. Generating synthetic medical data is an active research area to overcome the problem of having relatively few true positive cases in the medical domain. To be able to efficiently train machine learning (ML) models, which are the core of CAD systems, a considerable amount of data should be used. In this respect, we propose the PolypConnect pipeline, which can convert non-polyp images into polyp images to increase the size of training datasets for training. We present the whole pipeline with quantitative and qualitative evaluations involving endoscopists. The polyp segmentation model trained using synthetic data, and real data shows a 5.1% improvement of mean intersection over union (mIOU), compared to the model trained only using real data. The codes of all the experiments are available on GitHub to reproduce the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.