Ascorbic acid (AA) is the principle interferent present in brain extracellular fluid that can inhibit the ability of electrochemical sensors to selectively detect a particular analyte of interest. Considerable efforts have been made in recent times to develop highly selective membrane coatings to counteract the drawbacks associated with AA interference during in vivo monitoring. The primary objective of the work described within was to investigate the long term effect of storing such selective membranes, i.e., Nafion ® andPoly-o-phenylenediamine (PPD) under different conditions and how exposing them to repeated calibration protocols compromises the membranes ability to reject AA. Four different modified platinum (Pt) electrodes, Pt-PPD, Pt-Nafion ® (5/2), Pt-Nafion ® (1/2)-PPD, and Pt-Nafion ® (2/1)-PPD, stored at 4 °C demonstrated deterioration of the polymers integrity when exposed to repeated calibrations. On the contrary, exposing the same four electrode types to single calibrations confirmed excellent retention of AA rejection characteristics. Pt-PPD electrodes were then exposed to varying storage conditions and calibrated against AA on day 1, day 56 and day 168. Storing the Pt-PPD electrodes at 4 °C/N2 saturated glass container demonstrated retention of AA rejection characteristics after day 168. These results have clearly elucidated the optimum storage conditions for Pt-Nafion ® and Pt-PPD modified electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.