Summary.A new approach to credit risk modelling is introduced that avoids the use of inaccessible stopping times. Default events are associated directly with the failure of obligors to make contractually agreed payments. Noisy information about impending cash flows is available to market participants. In this framework the market filtration is modelled explicitly, and is assumed to be generated by one or more independent market information processes. Each such information process carries partial information about the values of the market factors that determine future cash flows. For each market factor, the rate at which true information is provided to market participants concerning the eventual value of the factor is a parameter of the model. Analytical expressions that can be readily used for simulation are presented for the price processes of defaultable bonds with stochastic recovery. Similar expressions can be formulated for other debt instruments, including multi-name products. An explicit formula is derived for the value of an option on a defaultable discount bond. It is shown that the value of such an option is an increasing function of the rate at which true information is provided about the terminal payoff of the bond. One notable feature of the framework is that it satisfies an overall dynamic consistency condition that makes it suitable as a basis for practical modelling situations where frequent recalibration may be necessary.
A new framework for asset price dynamics is introduced in which the concept of noisy information about future cash flows is used to derive the corresponding price processes. In this framework an asset is defined by its cash-flow structure. Each cash flow is modelled by a random variable that can be expressed as a function of a collection of independent random variables called market factors. With each such "X-factor" we associate a market information process, the values of which we assume are accessible to market participants. Each information process consists of a sum of two terms; one contains true information about the value of the associated market factor, and the other represents "noise". The noise term is modelled by an independent Brownian bridge that spans the interval from the present to the time at which the value of the factor is revealed. The market filtration is assumed to be that generated by the aggregate of the independent information processes. The price of an asset is given by the expectation of the discounted cash flows in the risk-neutral measure, conditional on the information provided by the market filtration. In the case where the cash flows are the dividend payments associated with equities, an explicit model is obtained for the share-price process. Dividend growth is taken into account by introducing appropriate structure on the market factors. The prices of options on dividend-paying assets are derived. Remarkably, the resulting formula for the price of a European-style call option is of the Black–Scholes–Merton type. We consider the case where the rate at which information is revealed to the market is constant, and the case where the information rate varies in time. Option pricing formulae are obtained for both cases. The information-based framework generates a natural explanation for the origin of stochastic volatility in financial markets, without the need for specifying on an ad hoc basis the dynamics of the volatility.
We consider a financial contract that delivers a single cash flow given by the terminal value of a cumulative gains process. The problem of modelling such an asset and associated derivatives is important, for example, in the determination of optimal insurance claims reserve policies, and in the pricing of reinsurance contracts. In the insurance setting, aggregate claims play the role of cumulative gains, and the terminal cash flow represents the totality of the claims payable for the given accounting period. A similar example arises when we consider the accumulation of losses in a credit portfolio, and value a contract that pays an amount equal to the totality of the losses over a given time interval. An expression for the value process of such an asset is derived as follows. We fix a probability space, together with a pricing measure, and model the terminal cash flow by a random variable; next, we model the cumulative gains process by the product of the terminal cash flow and an independent gamma bridge; finally, we take the filtration to be that generated by the cumulative gains process. An explicit expression for the value process is obtained by taking the discounted expectation of the future cash flow, conditional on the relevant market information. The price of an Arrow-Debreu security on the cumulative gains process is determined, and is used to obtain a closedform expression for the price of a European-style option on the value of the asset at the given intermediate time. The results obtained make use of remarkable properties of the gamma bridge process, and are applicable to a wide variety of financial products based on cumulative gains processes such as aggregate claims, credit portfolio losses, defined benefit pension schemes, emissions and rainfall.
The information-based asset-pricing framework of Brody, Hughston and Macrina (BHM) is extended to include a wider class of models for market information. In the BHM framework, each asset is associated with a collection of random cash flows. The price of the asset is the sum of the discounted conditional expectations of the cash flows. The conditional expectations are taken with respect to a filtration generated by a set of 'information processes'. The information processes carry imperfect information about the cash flows. To model the flow of information, we introduce in this paper a class of processes which we term Lévy random bridges (LRBs). This class generalises the Brownian bridge and gamma bridge information processes considered by BHM. An LRB is defined over a finite time horizon. Conditioned on its terminal value, an LRB is identical in law to a Lévy bridge. We consider in detail the case where the asset generates a single cash flow X T occurring at a fixed date T . The flow of market information about X T is modelled by an LRB terminating at the date T with the property that the (random) terminal value of the LRB is equal to X T . An explicit expression for the price process of such an asset is found by working out the discounted conditional expectation of X T with respect to the natural filtration of the LRB. The prices of European options on such an asset are calculated.1 driver of price dynamics (see [8,10,11,38,35,31]). In the BHM framework, each asset is associated with a collection of random cash flows. The price of the asset is the sum of the discounted conditional expectations of the cash flows. The conditional expectations are taken with respect to (i) an appropriate measure, and (ii) the filtration generated by a set of so-called information processes. The information processes carry noisy or imperfect market information about the cash flows. The present paper extends the work of [10] and [11] by introducing a wider class of information processes as a basis for the generation of the market filtration. The set-up is as follows:We fix a probability space (Ω, Q, F ), and assume that all processes and filtrations under consideration are càdlàg. Unless otherwise stated, when discussing a stochastic process we assume that the process takes values in R, begins at time 0, and the filtration is that generated by the process itself. We work with a finite time horizon [0, T ].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.