Background The COVID-19 pandemic has placed a huge strain on the health care system globally. The metropolitan area of Milan, Italy, was one of the regions most impacted by the COVID-19 pandemic worldwide. Risk prediction models developed by combining administrative databases and basic clinical data are needed to stratify individual patient risk for public health purposes. Objective This study aims to develop a stratification tool aimed at improving COVID-19 patient management and health care organization. Methods A predictive algorithm was developed and applied to 36,834 patients with COVID-19 in Italy between March 8 and the October 9, 2020, in order to foresee their risk of hospitalization. Exposures considered were age, sex, comorbidities, and symptoms associated with COVID-19 (eg, vomiting, cough, fever, diarrhea, myalgia, asthenia, headache, anosmia, ageusia, and dyspnea). The outcome was hospitalizations and emergency department admissions for COVID-19. Discrimination and calibration of the model were also assessed. Results The predictive model showed a good fit for predicting COVID-19 hospitalization (C-index 0.79) and a good overall prediction accuracy (Brier score 0.14). The model was well calibrated (intercept –0.0028, slope 0.9970). Based on these results, 118,804 patients diagnosed with COVID-19 from October 25 to December 11, 2020, were stratified into low, medium, and high risk for COVID-19 severity. Among the overall study population, 67,030 (56.42%) were classified as low-risk patients; 43,886 (36.94%), as medium-risk patients; and 7888 (6.64%), as high-risk patients. In all, 89.37% (106,179/118,804) of the overall study population was being assisted at home, 9% (10,695/118,804) was hospitalized, and 1.62% (1930/118,804) died. Among those assisted at home, most people (63,983/106,179, 60.26%) were classified as low risk, whereas only 3.63% (3858/106,179) were classified at high risk. According to ordinal logistic regression, the odds ratio (OR) of being hospitalized or dead was 5.0 (95% CI 4.6-5.4) among high-risk patients and 2.7 (95% CI 2.6-2.9) among medium-risk patients, as compared to low-risk patients. Conclusions A simple monitoring system, based on primary care data sets linked to COVID-19 testing results, hospital admissions data, and death records may assist in the proper planning and allocation of patients and resources during the ongoing COVID-19 pandemic.
In the absence of evidenced-based guidelines for early home treatment of COVID-19, some Italian groups of volunteer physicians (both general practitioners (GPs) and hospital doctors) virtually gathered themselves to discuss the best available evidence and develop shared schemes of therapy. We present the case of a 98year-old unvaccinated male on chronic anticoagulant therapy with dabigatran for paroxysmal atrial fibrillation (AF), who has been successfully treated for COVID-19 at home, according to one of the multidrug treatments proposed, since hospital admission was not feasible. At the very beginning of symptoms, antiinflammatory drugs, vitamin D, and adjuvant dietary supplements (quercetin, vitamin C, zinc, and vitamin K2) were administered, followed by dexamethasone and antibiotic therapy, according to the evolving clinical conditions. Gastroprotection with omeprazole was added. Eventually, our patient fully recovered, thus suggesting that careful home assistance under strict medical supervision can be successful, even in a very old subject with comorbidities, particularly if early treatment simultaneously addressing inflammation, hypercoagulation, and viral replication is started.
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has generated a huge strain on the health care system worldwide. The metropolitan area of Milan, Italy was one of the most hit area in the world. OBJECTIVE Robust risk prediction models are needed to stratify individual patient risk for public health purposes METHODS Two predictive algorithms were implemented in order to foresee the probability of being a COVID-19 patient and the risk of being hospitalized. The predictive model for COVID-19 positivity was developed in 61.956 symptomatic patients, whereas the model for COVID-19 hospitalization was developed in 36.834 COVID-19 positive patients. Exposures considered were age, gender, comorbidities and symptoms associated with COVID-19 (vomiting, cough, fever, diarrhoea, myalgia, asthenia, headache, anosmia, ageusia, and dyspnoea). RESULTS The predictive models showed a good fit for predicting COVID-19 disease [AUC 72.6% (95% CI 71.6%-73.5%)] and hospitalization [AUC 79.8% (95% CI 78.6%-81%)]. Using these results, 118,804 patients with COVID-19 from October 25 to December 11, 2020 were stratified into low, medium and high risk for COVID-19 severity. Among the overall population, 67.030 (56%) were classified as low-risk, 43.886 (37%) medium-risk, and 7.888 (7%) high-risk, with 89% of the overall population being assisted at home, 9% hospitalized, and 2% dead. Among those assisted at home, most people (60%) were classified as low risk, whereas only 4% were classified at high risk. According to ordinal logistic regression, the OR of being hospitalised or dead was 5.0 (95% CI 4.6-5.4) in high-risk patients and 2.7 (95% CI 2.6-2.9) in medium-risk patients, as compared to low-risk patients. CONCLUSIONS A simple monitoring system, based on primary care datasets with linkage to COVID-19 testing results, hospital admissions data and death records may assist in proper planning and allocation of patients and resources during the ongoing COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.