Background -Interdigital pyoderma is a common multifactorial, inflammatory disease of the canine interdigital skin. Lesions commonly become infected secondarily. In addition to management of the underlying cause, management of the chronic inflammatory changes in the interdigital skin created by secondary infection and by the release of keratin into deep tissues is required. Fluorescence biomodulation appears to modulate the inflammatory process in dermatological disorders and has shown promise in preliminary studies evaluating its use in superficial and deep pyoderma in dogs.Hypothesis/Objectives -To evaluate the effect of a fluorescence biomodulation (FB) system used in conjunction with systemic antibiotic on clinical manifestations of canine interdigital pyoderma (CIP), compared to dogs treated with antibiotic alone.Animals -Thirty-six dogs diagnosed with CIP.Methods and materials -Dogs were randomly allocated to treatment groups of either antibiotic alone (Group A) or antibiotic plus twice-weekly FB application (Group B). Dogs were scored over a 12 week period on the basis of two measured parameters: a global lesion score composed of four different lesions types and neutrophil engulfing bacterial scores.
Chronic diarrhoea is a frequent complaint in canine practice and the diagnostic path is often characterised by numerous diagnostic tests and stepwise empirical treatments, often applied before gastrointestinal endoscopy/mucosal biopsies. These include dietary interventions (novel protein, hydrolysed protein diet), parasiticides and still, in many cases, antibacterials. Indiscriminate use of antibacterial drugs risks detrimental consequences for both the individual patient (antimicrobial resistance, long‐term disruption of intestinal bacterial populations, potential worsening of gastrointestinal signs) and the general public. For that reason, in this Perspective essay we advocate use of antibacterials only after histopathologic evaluation of gastrointestinal biopsies or, for those cases in which endoscopy is not possible, after other therapeutic trials, such as diet/pre‐probiotics or anti‐inflammatory drugs have proven unsuccessful. They should be reserved, after appropriate dietary trials, for those canine chronic diarrhoeic patients with signs of true primary infection (i.e. signs of systemic inflammatory response syndrome or evidence of adherent‐invasive bacteria) that justify antibacterial use.
Clostridioides difficile infection (CDI) causes nosocomial/antibiotic-associated gastrointestinal diseases with dramatically increasing global incidence and mortality rates. The main C. difficile virulence factors, toxins A and B (TcdA/TcdB), cause cytopathic/cytotoxic effects and inflammation. We demonstrated that TcdB induces caspase-dependent, mitochondria-independent enteric glial cell (EGC) apoptosis that is enhanced by the pro-inflammatory cytokines TNF-α and IFN-γ (CKs) by increasing caspase-3/7/9 and PARP activation. Because this cytotoxic synergism is important for CDI pathogenesis, we investigated the apoptotic pathways involved in TcdB- and TcdB + CK-induced apoptosis indepth. EGCs were pre-treated with the inhibitors BAF or Q-VD-OPh (pan-caspase), Z-DEVD-fmk (caspase-3/7), Z-IETD-fmk (caspase-8), PD150606 (calpains), and CA-074Me (cathepsin B) 1 h before TcdB exposure, while CKs were given 1.5 h after TcdB exposure, and assays were performed at 24 h. TcdB and TcdB + CKs induced apoptosis through three signalling pathways activated by calpains, caspases and cathepsins, which all are involved both in induction and execution apoptotic signalling under both conditions but to different degrees in TcdB and TcdB + CKs especially as regards to signal transduction mediated by these proteases towards downstream effects (apoptosis). Calpain activation by Ca2+ influx is the first pro-apoptotic event in TcdB- and TcdB + CK-induced EGC apoptosis and causes caspase-3, caspase-7 and PARP activation. PARP is also directly activated by calpains which are responsible of about 75% of apoptosis in TcdB and 62% in TcdB + CK which is both effector caspase-dependent and -independent. Initiator caspase-8 activation mediated by TcdB contributes to caspase-3/caspase-7 and PARP activation and is responsible of about 28% of apoptosis in both conditions. Caspase-3/caspase-7 activation is weakly responsible of apoptosis, indeed we found that it mediates 27% of apoptosis only in TcdB. Cathepsin B contributes to triggering pro-apoptotic signal and is responsible in both conditions of about 35% of apoptosis by a caspase-independent manner, and seems to regulate the caspase-3 and caspase-7 cleaved fragment levels, highlighting the complex interaction between these cysteine protease families activated during TcdB-induced apoptosis. Further a relevant difference between TcdB- and TcdB + CK-induced apoptosis is that TcdB-induced apoptosis increased slowly reaching at 72 h the value of 18.7%, while TcdB + CK-induced apoptosis increased strongly reaching at 72 h the value of 60.6%. Apoptotic signalling activation by TcdB + CKs is enriched by TNF-α-induced NF-κB signalling, inhibition of JNK activation and activation of AKT. In conclusion, the ability of C. difficile to activate three apoptotic pathways represents an important strategy to overcome resistance against its cytotoxic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.