BackgroundThe diagnosis of feline epilepsy of unknown cause (EUC) requires a thorough diagnostic evaluation, otherwise the prevalence of EUC could be overestimated.HypothesisFeline EUC is a clinically defined disease entity, which differs from feline hippocampal necrosis by the absence of magnetic resonance imaging (MRI) signal alteration of the hippocampus. The objectives of this study were (1) to evaluate the prevalence of EUC in a hospital population of cats by applying well‐defined inclusion criteria, and (2) to describe the clinical course of EUC.AnimalsEighty‐one cats with recurrent seizures.MethodsRetrospective study—medical records were reviewed for cats presented for evaluation of recurrent seizures (2005–2010). Inclusion criteria were a defined diagnosis based on laboratory data, and either MRI or histopathology. Final outcome was confirmed by telephone interview with the owner. Magnetic resonance images were reviewed to evaluate hippocampal morphology and signal alterations.ResultsEpilepsy of unknown cause was diagnosed in 22% of cats with epilepsy. Physical, neurologic, and laboratory examinations, and either 1.5 T MRI and cerebrospinal fluid analysis or postmortem examination failed to identify an underlying cause. Cats with EUC had a higher survival rate (P < .05) and seizure remission occurred frequently (44.4%).Conclusion and Clinical ImportanceA detailed clinical evaluation and diagnostic imaging with MRI is recommended in any cat with recurrent seizures. The prognosis of cats with normal MRI findings and a clinical diagnosis of EUC are good. Standardized imaging guidelines should be established to assess the hippocampus in cats.
Hippocampal sclerosis (HS) refers to loss of hippocampal neurons and astrogliosis. In temporal lobe epilepsy (TLE), HS is a key factor for pharmacoresistance, even though the mechanisms are not quite understood. While experimental TLE models are available, there is lack of models reflecting the natural HS development. Among domestic animals, cats may present with TLE-like seizures in natural and experimental settings. With this study on the prevalence, segmental pattern and clinicopathological correlates of feline HS, we evaluated the translational value for human research. Evaluation schemes for human brains were applied to epileptic cats. The loss of neurons was morphometrically assessed and the degree of gliosis was recorded. Hippocampal changes resembling human HS were seen in about one third of epileptic cats. Most of these were associated with infiltrative diseases such as limbic encephalitis. Irrespective of the etiology and semiology of seizures, total hippocampal sclerosis was the most prevalent form seen in epileptic animals. Other HS types also occur at varying frequencies. Segmental differences to human HS can be explained by species-specific synaptic connectivities and a different spectrum of etiologies. All these variables require consideration when translating results from feline studies regarding seizure-associated changes of the temporal lobe and especially HS.
An 11-year-old, male neutered Jack Russell Terrier was presented with a nerve root signature of the right pelvic limb. Magnetic resonance imaging revealed a well demarcated, ovoid, extramedullary mass at the level of the L7 vertebral body. This showed, compared to normal spinal cord, hyperintense signal on T1- and T2-weighted images, which was suppressed on gradient echo short tau inversion recovery (GE-STIR) images. Additionally, the mass was characterized by a fat density on computed tomography images. Histopathology of the surgically excised mass was consistent with concentric periradicular lipoma, which has not been described in domestic animals yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.