To minimise environmental impact, avoid regulatory penalties, and improve competitiveness, energy-intensive manufacturing firms require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. Deep learning is widely touted as a superior analytical technique to traditional artificial neural networks, machine learning, and other classical time series models due to its high dimensionality and problem solving capabilities. Despite this, research on its application in demand-side energy forecasting is limited. We compare two benchmarks (Autoregressive Integrated Moving Average (ARIMA), and an existing manual technique used at the case site) against three deep learning models (simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)) and three machine learning models (Support Vector Regression (SVM), Random Forest, and K-Nearest Neighbors (KNN)) for short term load forecasting (STLF) using data from a Brazilian thermoplastic resin manufacturing plant. We use the grid search method to identify the best configurations for each model, and then use Diebold-Mariano testing to confirm the results. Results suggests that the legacy approach used at the case site is the worst performing, and that the GRU model outperformed all other models tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.