The increasing integration of renewable energy sources into the existing energy supply structure is challenging due to the intermittency typical of these energy sources, which implies problems of reliability and scheduling of grid operation. Concerning solar energy, the solar forecast tool predicts the photovoltaic (PV) power production and therefore permits a more efficient grid management. In this paper, the combination of clustering techniques and ANNs (Artificial Neural Networks) for day-ahead PV power forecast is analyzed. Clustering techniques are exploited to divide a dataset into different classes of days with similar weather conditions. Then, a dedicated ANN is developed for every group. The main goal is to assess the forecast improvement determined by the combination of ANNs and dataset clustering methods. Different combinations are compared on a real case study: a PV facility in SolarTechLAB, in Politecnico di Milano.
The increasing penetration of Renewable Energy Sources (RESs) in the energy mix is determining an energy scenario characterized by decentralized power production. Between RESs power generation technologies, solar PhotoVoltaic (PV) systems constitute a very promising option, but their production is not programmable due to the intermittent nature of solar energy. The coupling between a PV facility and a Battery Energy Storage System (BESS) allows to achieve a greater flexibility in power generation. However, the design phase of a PV+BESS hybrid plant is challenging due to the large number of possible configurations. The present paper proposes a preliminary procedure aimed at predicting a family of batteries which is suitable to be coupled with a given PV plant configuration. The proposed procedure is applied to new hypothetical plants built to fulfill the energy requirements of a commercial and an industrial load. The energy produced by the PV system is estimated on the basis of a performance analysis carried out on similar real plants. The battery operations are established through two decision-tree-like structures regulating charge and discharge respectively. Finally, an unsupervised clustering is applied to all the possible PV+BESS configurations in order to identify the family of feasible solutions.
This work proposes and evaluates a method for the nowcasting of solar irradiance variability in multiple time horizons, namely 5, 10, and 15 min ahead. The method is based on a Convolutional Neural Network structure that exploits infrared sky images acquired through an All-Sky Imager to estimate the range of possible values that the Clear-Sky Index will possibly assume over a selected forecast horizon. All data available, from the infrared images to the measurements of Global Horizontal Irradiance (necessary in order to compute Clear-Sky Index), are acquired at SolarTechLAB in Politecnico di Milano. The proposed method demonstrated a discrete performance level, with an accuracy peak for the 5 min time horizon, where about 65% of the available samples are attributed to the correct range of Clear-Sky Index values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.