Monoamine oxidase B (MAO B) is a mitochondrial outermembrane flavoenzyme that is a well-known target for antidepressant and neuroprotective drugs. We determined the structure of the human enzyme to 3 A resolution. The enzyme binds to the membrane through a C-terminal transmembrane helix and apolar loops located at various positions in the sequence. The electron density shows that pargyline, an analog of the clinically used MAO B inhibitor, deprenyl, binds covalently to the flavin N5 atom. The active site of MAO B consists of a 420 A(3)-hydrophobic substrate cavity interconnected to an entrance cavity of 290 A(3). The recognition site for the substrate amino group is an aromatic cage formed by Tyr 398 and Tyr 435. The structure provides a framework for probing the catalytic mechanism, understanding the differences between the B- and A-monoamine oxidase isoforms and designing specific inhibitors.
Many biochemical processes exploit the extraordinary versatility of flavoenzymes and their flavin cofactors. Flavoproteins are now known to have a variety of folding topologies but a careful examination of their structures suggests that there are recurrent features in their catalytic apparatus. The flavoenzymes that catalyse dehydrogenation reactions share a few invariant features in the hydrogen-bond interactions between their protein and flavin constituents. Similarly, the positioning of the reactive part of the substrate with respect to the cofactor is generally conserved. Modulation of substrate and cofactor reactivity and exact positioning of the substrate are key elements in the mode of action of these enzymes.
The three-dimensional structure of recombinant human monoamine oxidase A (hMAO A) as its clorgyline-inhibited adduct is described. Although the chain-fold of hMAO A is similar to that of rat MAO A and human MAO B (hMAO B), hMAO A is unique in that it crystallizes as a monomer and exhibits the solution hydrodynamic behavior of a monomeric form rather than the dimeric form of hMAO B and rat MAO A. hMAO A's active site consists of a single hydrophobic cavity of Ϸ550 Å 3 , which is smaller than that determined from the structure of deprenyl-inhibited hMAO B (Ϸ700 Å 3 ) but larger than that of rat MAO A (Ϸ450 Å 3 ). An important component of the active site structure of hMAO A is the loop conformation of residues 210 -216, which differs from that of hMAO B and rat MAO A. The origin of this structural alteration is suggested to result from long-range interactions in the monomeric form of the enzyme. In addition to serving as a basis for the development of hMAO A specific inhibitors, these data support the proposal that hMAO A involves a change from the dimeric to the monomeric form through a Glu-151 3 Lys mutation that is specific flavin ͉ neurotransmitter ͉ membrane protein ͉ antidepressant target H uman monoamine oxidase A (hMAO A) is an outer mitochondrial membrane-bound flavoenzyme that catalyzes the oxidation of the neurotransmitters serotonin, dopamine, and norepinephrine. Recent studies have demonstrated that a deficiency or low level of expression of this enzyme results in a phenotype of aggressive behavior (1, 2). The elucidation of the 3D structures of human MAO B (hMAO B) (3, 4) (72% sequence identity with hMAO A) and of rat MAO A (rMAO A) (5) (92% sequence identity with hMAO A with no insertions or deletions) has provided insights into the structure and mechanism of these pharmacologically important enzymes. There are several functional properties of hMAO A that differentiate it from rMAO A, despite their high level of sequence identity. hMAO A has been shown to exhibit a 10-fold lower affinity (IC 50 ) than rMAO A for the specific irreversible inhibitor clorgyline (6). Comparisons of the influence of a Phe-208 3 Ile mutation on MAO A from human (7) and rat (8) also show differential effects on activities and sensitivities to irreversible inhibition. Functional differences between hMAO A and rMAO A have been implicated in comparison with their respective sensitivities to phentermine inhibition (9). These differences in properties between hMAO A and rMAO A suggest structural differences exist for these two enzymes.With the development of a high-level expression system for hMAO A in our laboratory (10) and successes with the structural elucidation of hMAO B (3, 4), a collaborative program was established to elucidate the structure of hMAO A by x-ray crystallography. Here, we report the structures of two hMAO A crystal forms and demonstrate structural differences between hMAO A and rMAO A as well as hMAO B. Our data indicate that the considerable literature on MAO A-inhibitor development by using rat models m...
Structures of human monoamine oxidase B (MAO B) in complex with safinamide and two coumarin derivatives, all sharing a common benzyloxy substituent, were determined by X-ray crystallography. These compounds competitively inhibit MAO B with Ki values in the 0.1-0.5 microM range that are 30-700-fold lower than those observed with MAO A. The inhibitors bind noncovalently to MAO B, occupying both the entrance and the substrate cavities and showing a similarly oriented benzyloxy substituent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.