The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.
Abstract. Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present an atlas-based approach which learns a dose prediction model for each patient (atlas) in a training database, and then learns to match novel patients to the most relevant atlases. The method creates a spatial dose objective, which specifies the desired dose-pervoxel, and therefore replaces any requirement for specifying dose-volume objectives for conveying the goals of treatment planning. A probabilistic dose distribution is inferred from the most relevant atlases, and is scalarized using a conditional random field to determine the most likely spatial distribution of dose to yield a specific dose prior (histogram) for relevant regions of interest. Voxel-based dose mimicking then converts the predicted dose distribution to a deliverable treatment plan dose distribution. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients. Our preliminary results are promising; automated planning achieved a higher number of dose evaluation criteria in 7 patients and an equal number in 4 patients compared with clinical. Overall, the relative number of criteria achieved was higher for automated planning versus clinical (17 vs 8) and automated planning demonstrated increased sparing for organs at risk (52 vs 44) and better target coverage/uniformity (41 vs 31). The novel dose prediction method with dose mimicking can generate deliverable treatment plans in 12-13 minutes without any user interaction. The method is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.
Purpose To develop a knowledge‐based automated planning pipeline that generates treatment plans without feature engineering, using deep neural network architectures for predicting three‐dimensional (3D) dose. Methods Our knowledge‐based automated planning (KBAP) pipeline consisted of a knowledge‐based planning (KBP) method that predicts dose for a contoured computed tomography (CT) image followed by two optimization models that learn objective function weights and generate fluence‐based plans, respectively. We developed a novel generative adversarial network (GAN)‐based KBP approach, a 3D GAN model, which predicts dose for the full 3D CT image at once and accounts for correlations between adjacent CT slices. Baseline comparisons were made against two state‐of‐the‐art deep learning–based KBP methods from the literature. We also developed an additional benchmark, a two‐dimensional (2D) GAN model which predicts dose to each axial slice independently. For all models, we investigated the impact of multiplicatively scaling the predictions before optimization, such that the predicted dose distributions achieved all target clinical criteria. Each KBP model was trained on 130 previously delivered oropharyngeal treatment plans. Performance was tested on 87 out‐of‐sample previously delivered treatment plans. All KBAP plans were evaluated using clinical planning criteria and compared to their corresponding clinical plans. KBP prediction quality was assessed using dose‐volume histogram (DVH) differences from the corresponding clinical plans. Results The best performing KBAP plans were generated using predictions from the 3D GAN model that were multiplicatively scaled. These plans satisfied 77% of all clinical criteria, compared to the clinical plans, which satisfied 67% of all criteria. In general, multiplicatively scaling predictions prior to optimization increased the fraction of clinical criteria satisfaction by 11% relative to the plans generated with nonscaled predictions. Additionally, these KBAP plans satisfied the same criteria as the clinical plans 84% and 8% more frequently as compared to the two benchmark methods, respectively. Conclusions We developed the first knowledge‐based automated planning framework using a 3D generative adversarial network for prediction. Our results, based on 217 oropharyngeal cancer treatment plans, demonstrated superior performance in satisfying clinical criteria and generated more realistic plans as compared to the previous state‐of‐the‐art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.