The current world environment scenario demands new and more eco-friendly solutions to global problems that cover the demands for materials. This sector has included green polymer-based composites and natural reinforcers from origins of renewable sources, these Green Composites (GC), natural-fiber-reinforced bio-composites in which the matrix is a bio-based polymer, have shown attractive characteristics. Biodegradability is one of the most important attributes for these new “green” materials, in that this characteristic allows for their introduction into the world market as an environmental solution. The manufacturing processes for obtaining these materials have observed important improvements because each raw material exhibits different properties and characteristics and their eco-friendly character has facilitated its incorporation into diverse sectors, such as construction, automotive, packaging, and medicine, among others. At present, this segment represents an important income for some economies, especially those where these resources are available, enhancing the creation of green economies, strengthening the world’s efforts toward sustainability.
Luffa fibers were evaluated as a reinforcement material in poly-hydroxy-butyrate matrix composites. The treatments consisted of varying the incorporation percentage of mercerized and non-mercerized luffa fibers in a poly-hydroxybutyrate (PHB) matrix (5%, 10%, and 20% w/v). Composites made with PHB and reinforced with luffa fibers (treated and non-treated) were mechanically evaluated (tensile strength, Young’s modulus, and percentage of elongation at break), the surface morphology was described by using scanning electronic microscopy, and the degradability behavior of composites was obtained. According to the results, mechanical properties decreased when the percentage of fibers increased and no significant effects were observed when compared with mercerized fiber composites. Degradability tests demonstrated that the weight loss increased with increased fiber content in composites, independent of the applied pretreatments. Microscopy images exhibited that mercerization improved the fiber incorporation into the polymeric matrix, diminishing the “pull out” effect; the above-mentioned result was supported by using the Fourier-transform infrared spectroscopy technique, observing the reduction of lignin and hemicellulose peaks in mercerized fibers. Based on the composite mechanical performance and degradability behavior, it was concluded that this material could be used in the packaging sector as biodegradable secondary packaging material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.