This paper presents a novel approach to exploit FPGA dynamic partial reconfiguration to improve the fault tolerance of complex microprocessor-based systems, with no need to statically reserve area to host redundant components. The proposed method not only improves the survivability of the system by allowing the online replacement of defective key parts of the processor, but also provides performance graceful degradation by executing in software the tasks that were executed in hardware before a fault and the subsequent reconfiguration happened. The advantage of the proposed approach is that thanks to a hardware hypervisor, the CPU is totally unaware of the reconfiguration happening in real-time, and there's no dependency on the CPU to perform it. As proof of concept a design using this idea has been developed, using the LEON3 open-source processor, synthesized on a Virtex 4 FPGA.
Abstract. We show how the cofactorization step, a compute-intensive part of the relation collection phase of the number field sieve (NFS), can be farmed out to a graphics processing unit. Our implementation on a GTX 580 GPU, which is integrated with a state-of-the-art NFS implementation, can serve as a cryptanalytic co-processor for several Intel i7-3770K quad-core CPUs simultaneously. This allows those processors to focus on the memory-intensive sieving and results in more useful NFS-relations found in less time.
We present a preliminary study of buffer overflow vulnerabilities in CUDA software running on GPUs. We show how an attacker can overrun a buffer to corrupt sensitive data or steer the execution flow by overwriting function pointers, e.g., manipulating the virtual table of a C++ object. In view of a potential mass market diffusion of GPU accelerated software this may be a major concern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.