Caspases, a family of cysteine proteases most often investigated for their roles in apoptosis, have also been demonstrated to have functions that are vital for the efficient execution of cell differentiation. One such role that has been described is the requirement of caspase-3 for the differentiation of skeletal myoblasts into myotubes but, as yet, the mechanism leading to caspase-3 activation in this case remains elusive. Here, we demonstrate that caspase-9, an initiator caspase in the mitochondrial death pathway, is responsible for the activation of caspase-3 in differentiating C2C12 cells. Reduction of caspase-9 levels, using an shRNA construct, prevented caspase-3 activation and inhibited myoblast fusion. Myosin-heavychain expression, which accompanies myoblastic differentiation, was not caspase-dependent. Overexpression of Bcl-xL, a protein that inhibits caspase-9 activation, had the same effect on muscle differentiation as knockdown of caspase-9. These data suggest that the mitochondrial pathway is required for differentiation; however, the release of cytochrome c or Smac (Diablo) could not be detected, raising the possibility of a novel mechanism of caspase-9 activation during muscle differentiation.
Lung cancer is a major public health problem in the western world, and gene therapy strategies to tackle this disease systemically are often impaired by inefficient delivery of the vector to the tumour tissue. Some of the main factors inhibiting systemic delivery are found in the blood stream in the form of red and white blood cells (WBCs) and serum components. Mesenchymal stem cells (MSCs) have been shown to home to tumour sites and could potentially act as a shield and vehicle for a tumouricidal gene therapy vector. Here, we describe the ability of an adenoviral vector expressing TRAIL (Ad.TR) to transduce MSCs and show the apoptosis-inducing activity of these TRAIL-carrying MSCs on A549 lung carcinoma cells. Intriguingly, using MSCs transduced with Ad.enhanced-green-fluorescent-protein (EGFP) we could show transfer of viral DNA to cocultured A549 cells resulting in transgenic protein production in these cells, which was not inhibited by exposure of MSCs to human serum containing high levels of adenovirus neutralizing antibodies. Furthermore, Ad.TR-transduced MSCs were shown not to induce T-cell proliferation, which may have resulted in cytotoxic T-cell-mediated apoptosis induction in the Ad.TR-transduced MSCs. Apoptosis was also induced in A549 cells by Ad.TR-transduced MSCs in the presence of physiological concentrations of WBC, erythrocytes and sera from human donors that inhibit or neutralize adenovirus alone. Moreover, we could show tumour growth reduction with TRAIL-loaded MSCs in an A549 xenograft mouse model. This is the first study that demonstrates the potential therapeutic utility of Ad.TR-transduced MSCs in cancer cells and the stability of this vector in the context of the blood environment.
Mesenchymal stem cells (MSCs) are multipotent stromal cells which can differentiate into a variety of cell types including osteoblasts, adipocytes and chondrocytes. They are normally resident in adipose tissue, bone marrow and the umbilical cord, but can also be found in other tissues and are known to be recruited to sites of wound healing as well as growing tumours. The therapeutic potential of MSCs has been explored in a number of phase I/II and III clinical trials, of which several were targeted against graft-versus-host disease and to support engraftment of haematopoietic stem cells (HSCs), but currently only very few in the oncology field. There are now three clinical trials either ongoing or recruiting patients that use MSCs to treat tumour disease. In these, MSCs target gastrointestinal, lung and ovarian cancer, respectively. The first study uses MSCs loaded with a HSV-TK expression construct under the control of the CCL5 promoter, and has recently reported successful completion of Phase I/II. While no adverse side effects were seen during this study, no outcomes with respect to therapeutic benefits have been published. The other clinical trials targeting lung and ovarian cancer will be using MSCs expressing cytokines as therapeutic payload. Despite these encouraging early steps towards their clinical use, many questions are still unanswered regarding the biology of MSCs in normal and pathophysiological settings. In this review, in addition to summarising the current state of MSC-based therapeutic approaches for cancer, we will describe the remaining questions, obstacles and risks, as well as novel developments such as MSC-derived nanoghosts.
SARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.