This study combines in vivo ultrasound measurements of the Vastus Lateralis (VL) and Gastrocnemius Medialis (GM) muscles with electromyographic, kinematic, and kinetic measurements during treadmill running at different speeds (10, 13, and 16 km/h) to better understand the role of muscle and tendon behavior in two functionally different muscle‐tendon units. In addition, the force‐length and force‐velocity relationships of VL and GM were experimentally assessed by combining dynamometry and EMG data with ultrasound measurements. With increasing running speed, the operating length of the fascicles in the stance phase shifted toward smaller lengths in the GM (P < .05; moving down the ascending limb of the F‐L relationship) and longer lengths in the VL (P < .05; moving down the descending limb) at all speeds; however, both muscles contracted close to their optimal length L0, where isometric force is maximal. Whereas the length of VL SEE did not change as a function of speed, GM SEE lengthened and shortened more at higher speeds. With increasing running speed, the contribution of elastic strain energy to the positive power generated by the MTU increased more for GM (from 0.75 to 1.56 W/kg) than for VL (from 0.62 to 1.02 W/kg). Notwithstanding these differences, these results indicate that, at increasing running speeds, both the VL and GM muscles produce high forces at low contraction velocities, and that the primary function of both muscle‐tendon units is to enhance the storage and recovery of elastic strain energy.
During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the
W ext (+) is larger in SR than in CR (2.5 vs. 1.4 J kg(-1) m(-1) in the range of investigated speeds: 2-3.5 m s(-1)) and W int (+) , at fast speed, is about half of W tot (+) . eff(+) is lower in SR (16 %) than in CR (50-60 % at comparable speeds) and this can be attributed to a lower elastic energy reutilization due to the acceleration/deceleration phases over this short shuttle distance.
Purpose We investigated the role of elastic strain energy on the “apparent” efficiency of locomotion (AE), a parameter that is known to increase as a function of running speed (up to 0.5–0.7) well above the values of “pure” muscle efficiency (about 0.25–0.30). Methods In vivo ultrasound measurements of the gastrocnemius medialis (GM) muscle–tendon unit (MTU) were combined with kinematic, kinetic and metabolic measurements to investigate the possible influence of the Achilles tendon mechanical behaviour on the mechanics (total mechanical work, WTOT) and energetics (net energy cost, Cnet) of running at different speeds (10, 13 and 16 km h−1); AE was calculated as WTOT/Cnet. Results GM fascicles shortened during the entire stance phase, the more so the higher the speed, but the majority of the MTU displacement was accommodated by the Achilles tendon. Tendon strain and recoil increased as a function of running speed (P < 0.01 and P < 0.001, respectively). The contribution of elastic energy to the positive work generated by the MTU also increased with speed (from 0.09 to 0.16 J kg−1 m−1). Significant negative correlations (P < 0.01) were observed between tendon work and metabolic energy at each running speed (the higher the tendon work the lower the metabolic demand) and significant positive correlations were observed between tendon work and AE (P < 0.001) at each running speed (the higher the tendon work the higher the efficiency). Conclusion These results support the notion that the dynamic function of tendons is integral in reducing energy expenditure and increasing the “apparent” efficiency of running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.