Most works in food computing focus on generating new recipes from scratch. However, there is a large number of new online recipes generated daily with a large number of users reviews, with recommendations to improve the recipe flavor and ideas to modify them. This fact encourages the use of these data for obtaining improved and customized versions. In this thesis, we propose an adaptation engine based on fine-tuning a word embedding model. We will capture, in an unsupervised way, the semantic meaning of the recipe ingredients. We will use their word embedding representations to align them to external databases, thus enriching their data. The adaptation engine will use this food data to modify a recipe into another fitting specific user preferences (e.g., decrease caloric intake or make a recipe). We plan to explore different types of recipe adaptations while preserving recipe essential features such as cuisine style and essence simultaneously. We will also modify the rest of the recipe to the new changes to be reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.