Nowadays, the development of new approaches which smartly bypass the use of harsh reaction conditions and hazardous chemicals covers a pivotal role. In this research paper the synthesis, characterization, and application of novel libraries of triazine bis-quaternary ammonium salts, employed as coupling agents to produce amides is reported. Full characterization of the novel compounds by 1H and 13C NMR, FT-IR spectroscopy, ESI-HRMS, and elemental analysis is provided. Furthermore, a comparison in terms of activity of the preformed triazine compounds versus in situ formulations has been evaluated for the formation of amides in the presence of phenylethylamine and different aliphatic or aromatic acids. A possible correlation between the chemical structure of the triazine and their reactivity for the formation of the triazine bis-quaternary ammonium salts is also reported. Moreover, best performing condensation agents have been further tested for the cross-linking of collagen powder as possible wet white tanning systems, for sustainable and environmentally friendly leather tanning.
Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl− or ClO4−). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today.
Efficient, environmentally and economically sustainable, and nontoxic antibacterial products are of global relevance in the fight against microorganism contamination. In this work, an easy and straightforward method for the synthesis of bis‐morpholino triazine quaternary ammonium salts (bis‐mTQAS) is reported, starting from 2,4,6‐trichloro‐1,3,5‐triazine or 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine and various N‐alkylmorpholines. Bis‐mTQAS were tested as antimicrobials against Gram‐negative and Gram‐positive bacterial strains. The best‐performing bis‐mTQAS were found to achieve total disinfection against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 at 50 and 400 μg/mL, respectively. Distinctively, bis‐mTQAS with the highest antimicrobial efficiency had lowest cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.