We present the results of a project to detect small ($1 km) main-belt asteroids with the 3.6 m Canada-France-Hawaii Telescope. We observed in two filters (MegaPrime g 0 and r 0 ) in order to compare the results in each band. Owing to the observational cadence we did not observe the same asteroids through each filter and thus do not have true color information. However, strong differences in the size distributions as seen in the two filters point to a color dependence at these sizes, perhaps to be expected in this regime, in which asteroid cohesiveness begins to be dominated by physical strength and composition rather than by gravity. The best-fit slopes of the cumulative size distributions (CSDs) in both filters tend toward lower values for smaller asteroids, consistent with the results of previous studies. In addition to this trend, the size distributions seen in the two filters are distinctly different, with steeper slopes in r 0 than in g 0 . Breaking our sample up according to semimajor axis, the difference between the filters in the inner belt is found to be somewhat less pronounced than in the middle and outer belt, but the CSD of those asteroids seen in the r 0 filter is consistently and significantly steeper than in g 0 throughout. The CSD slopes also show variations with semimajor axis within a given filter, particularly in r 0 . We conclude that the size distribution of main-belt asteroids is likely to be color-dependent at kilometer sizes and that this dependence may vary across the belt.
The Canadian Network for the Detection of Atmospheric Change and Environment Canada DIAL lidar located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, has been upgraded to measure water vapour mixing ratio profiles. The lidar is capable of measuring water vapour in the dry Arctic atmosphere up to the tropopause region. Measurements were obtained in the February to March polar sunrise during 2007, 2008 and 2009 as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign. Before such measurements can be used to address important questions in understanding dynamics and chemistry, the lidar measurements must be calibrated against an independent determination of water vapour. Here, radiosonde measurements of relative humidity have been used to empirically calibrate the lidar measurements. It was found that the calibration varied significantly between each year's campaign. However, the calibration of the lidar during an individual polar sunrise campaign agrees on average with the local radiosonde measurements to better than 12%. To independently validate the calibration of the lidar derived from the radiosondes, comparisons are made between the calibrated lidar measurements and water vapour measurements from the ACE satellite-borne Fourier Transform Spectrometer (ACE-FTS). The comparisons between the lidar and satellite-borne spectrometer for both a campaign average and single overpasses show favourable agreement between the two instruments and help validate the lidar's calibration. The 39 nights of high-Arctic water vapour measurements obtained offer the most detailed high spatial-temporal resolution measurement set available for understanding this time of transition from the long polar night to polar day
The Canadian Network for the Detection of Atmospheric Change and Environment Canada DIAL lidar located at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut has been upgraded to measure water vapour mixing ratio profiles at 150 m vertical resolution. The system is capable of measuring water vapour in the dry arctic atmosphere up to the tropopause region. Measurements were obtained in the February to March polar sunrise during 2007, 2008 and 2009 as part of the Canadian Arctic ACE Validation Campaign. Before such measurements can be used to address important questions in understanding dynamics and chemistry, the lidar measurements must be calibrated against an independent determination of water vapour. Here, radiosonde measurements of relative humidity have been used to calibrate the lidar measurements. It was found that the calibration varied significantly between each campaign. However, the calibration of the lidar during an individual polar sunrise campaign agrees with the local radiosonde measurements to better than 12% below 6 km altitude. To independently validate the calibration of the lidar derived from the radiosondes, comparisons are made between the calibrated lidar measurements and water vapour measurements from the Atmospheric Chemistry Experiment satellite-borne Fourier Transform Spectrometer. The comparisons between the lidar and satellite for both campaign averages and single overpasses show favourable agreement between the two instruments and help validate the comparison with the radiosondes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.