The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network.
Background and Purpose
Reactive oxygen species (ROS) are normally involved in cell oxidative stress but also play a role as cellular messengers in redox signalling; for example, modulating the activity of neurotransmitter receptors and ion channels. However, the direct actions of ROS on GABAA receptors were not previously demonstrated. In the present work, we studied the effects of ROS on GABAAρ1 receptor function.
Experimental Approach
GABAAρ1 receptors were expressed in oocytes and GABA‐evoked responses electrophysiologically recorded in the presence or absence of ROS. Chemical protection of cysteines by selective sulfhydryl reagents and site‐directed mutagenesis studies were used to identify protein residues involved in ROS actions.
Key Results
GABAAρ1 receptor‐mediated responses were significantly enhanced in a concentration‐dependent and reversible manner by H2O2. Potentiating effects were attenuated by a free radical scavenger, lipoic acid or an inhibitor of the Fenton reaction, deferoxamine. Each ρ1 subunit contains only three cysteine residues, two extracellular at the Cys‐loop (C177 and C191) and one intracellular (C364) at the M3‐M4 linker. Mutant GABAAρ1 receptors in which C364 was exchanged by alanine were completely insensitive to modulation, implying that this site, rather than a cysteine in the Cys‐loop, is essential for ROS modulation.
Conclusion and Implications
Our results show that the function of GABAAρ1 receptors is enhanced by ROS and that the intracellular C364 is the sensor for ROS actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.