The ignition of Al/CuO multilayered material is studied experimentally to explore the effect of heating surface area, layering and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area has to be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm 2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu 2 O, the oxygen diffusing across Cu 2 O and Al 2 O 3 layers before reaching the Al layer where it reacts to form Al 2 O 3 . The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also evidence that for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value, named minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of CuO one), the minimum ignition response time can be easily tuned from 59 µs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. Not only this work gives a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but it also details a reliable and robust MEMS process to fabricate igniters and it brings new understanding of phenomena governing the ignition process of Al/CuO multilayers.
A miniature rocket device integrating nanothermite and RDX is presented for shock initiation of high explosive application. This Ø 2.5 mm device consists in several assembled and screwed parts: a pyroMEMS chip with a Al/CuO multilayers on it to ignite within less than 100 μs a few milligrams of nanothermite, which reacts violently and ignites within 150 μs a RDX charge compacted in the closed combustion chamber. The gases generated by the RDX combustion rapidly expand, cut and propel a Ø 2.5 mm by 1 mm thick stainless steel flyer in the barrel. After the presentation of the rocket design, fabrication and assembly, by measuring the pressure‐time evolution in the chamber we demonstrate the advantage to ignite the RDX with Al/Bi2O3 nanothermite to optimize the pressure impulse. We show that the stainless steel flyer of 40 mg is properly cut and propelled at velocities calculated from 665 to 1083 m s−1 as a function of the RDX extent of compaction and ignition charge. As expected, the average flyer velocity increases with the mass of loaded RDX and flyer's shear thickness. We finally prove that the impact of the flyer can initiate directly in detonation a RDX explosive, which is very promising to remove primary explosives in detonator.
The complex Al/CuO self-propagating reaction involving multi-phase and multi-species dynamics was studied in order to investigate the very high flame temperature around the vaporization temperature of alumina, even under a neutral environment. Experiments were performed on different sputter-deposited Al/CuO multilayers coupling optical spectroscopy with high speed camera measurements. The clear presence of both AlO and Al signatures in gas phase suggests that the redox reaction starts in the bulk nanolaminate, which then rapidly tear off the substrate to continue burning in a heterogeneous (condensed and gas) phase in the environment. The flame temperature increases with the stoichiometry but is independent of the bilayer thickness. In addition to the confirmation of the effects of stoichiometry and the bilayer thickness on the characteristics of the self-propagating reaction, the predominant role of
Highlights • A novel miniaturized circuit breaker integrating nanothermites is developed. • The actuation is based on the pressure generated by the reaction of a confined and safe Al/CuO nanothemites placed below the circuitry to be destroyed. • Easy tunability of the pressure burst by modifying the Al/CuO mixing characteristics: equivalence ratio, solids loading… • Fast response and excellent repeatability is demonstrated. • The concept and technology hold potential for commercial scale production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.