The macrolide antibiotics include natural members, prodrugs and semisynthetic derivatives. These drugs are indicated in a variety of infections and are often combined with other drug therapies, thus creating the potential for pharmacokinetic interactions. Macrolides can both inhibit drug metabolism in the liver by complex formation and inactivation of microsomal drug oxidising enzymes and also interfere with microorganisms of the enteric flora through their antibiotic effects. Over the past 20 years, a number of reports have incriminated macrolides as a potential source of clinically severe drug interactions. However, differences have been found between the various macrolides in this regard and not all macrolides are responsible for drug interactions. With the recent advent of many semisynthetic macrolide antibiotics it is now evident that they may be classified into 3 different groups in causing drug interactions. The first group (e.g. troleandomycin, erythromycins) are those prone to forming nitrosoalkanes and the consequent formation of inactive cytochrome P450-metabolite complexes. The second group (e.g. josamycin, flurithromycin, roxithromycin, clarithromycin, miocamycin and midecamycin) form complexes to a lesser extent and rarely produce drug interactions. The last group (e.g. spiramycin, rokitamycin, dirithromycin and azithromycin) do not inactivate cytochrome P450 and are unable to modify the pharmacokinetics of other compounds. It appears that 2 structural factors are important for a macrolide antibiotic to lead to the induction of cytochrome P450 and the formation in vivo or in vitro of an inhibitory cytochrome P450-iron-nitrosoalkane metabolite complex: the presence in the macrolide molecules of a non-hindered readily accessible N-dimethylamino group and the hydrophobic character of the drug. Troleandomycin ranks first as a potent inhibitor of microsomal liver enzymes, causing a significant decrease of the metabolism of methylprednisolone, theophylline, carbamazepine, phenazone (antipyrine) and triazolam. Troleandomycin can cause ergotism in patients receiving ergot alkaloids and cholestatic jaundice in those taking oral contraceptives. Erythromycin and its different prodrugs appear to be less potent inhibitors of drug metabolism. Case reports and controlled studies have, however, shown that erythromycins may interact with theophylline, carbamazepine, methylprednisolone, warfarin, cyclosporin, triazolam, midazolam, alfentanil, disopyramide and bromocriptine, decreasing drug clearance. The bioavailability of digoxin appears also to be increased by erythromycin in patients excreting high amounts of reduced digoxin metabolites, probably due to destruction of enteric flora responsible for the formation of these compounds. These incriminated macrolide antibiotics should not be administered concomitantly with other drugs known to be affected metabolically by them, or at the very least, combined administration should be carried out only with careful patient monitoring.(ABSTRACT TRUNCATED AT 400 WORDS)
After the discovery of erythromycin and other natural compounds, including oleandomycin, spiramycin, josamycin and midecamycin, much research has been devoted to synthesizing derivatives or analogues with improved chemical, biological and pharmacokinetic properties. These new macrolides are semisynthetic molecules that differ from the original compounds in their substitution pattern of the lactone ring system. The chemical structure of macrolides is characterized by a large lactone ring containing from 12 to 16 atoms to which are attached, via glycosidic bonds, one or more sugars. The lactone ring is substituted by hydroxyl or alkyl groups, one ketone at C7 in 12-membered macrolides and at C9 in 14-membered macrolides, and one aldehyde group in 16-membered macrolides. The only compound with a 15-membered ring contains a tertiary amino group. Although the 12-membered macrolides have never become important in clinical practice, in recent years numerous new 14-membered macrolide derivatives of erythromycin A have shown improved pharmacokinetics due to chemical modifications of a hydroxyl group at C6, a proton at C8, or a ketone at C9. Derivatives, such as dirithromycin, roxithromycin, clarithromycin and flurithromycin, have all been synthesized with the aim of inhibiting their decomposition under acidic conditions to inactive anhydrohemiketal derivatives. A new 15-membered macrolide, azithromycin, with a methylated nitrogen inserted into the lactone ring shows good activity against Gram-negative bacteria. The efforts expended in chemical and biochemical modifications of 16-membered macrolides have been less successful, with only a few new molecules, such as rokitamycin and miocamycin, showing improved bioavailability and activity against some resistant micro-organisms.(ABSTRACT TRUNCATED AT 250 WORDS)
A reappraisal of current daptomycin dosing recommendations is needed to improve the PTA and reduce toxicity among critically ill patients.
In animal models of inflammation, the pregnancy hormone relaxin was shown to reduce the recruitment of leukocytes, especially neutrophils, in inflamed tissues. The current study was designed to clarify whether relaxin could inhibit activation of isolated human neutrophils and, if so, whether the nitric oxide (NO) biosynthetic pathway was involved, as occurs in other relaxin targets. Human neutrophils were preincubated with 1, 10, and 100 nmol/liter porcine relaxin for 1 h before activation with N-formyl-Met-Leu-Phe (10 micromol/liter) or phorbol-12-myristate-13-acetate (0.1 micromol/liter). In selected experiments, the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA, 100 micromol/liter) was added to the samples 30 min before relaxin. In other experiments, chemically inactivated relaxin (10 nmol/liter) was substituted for authentic relaxin. Untreated, nonactivated neutrophils were the controls. Relaxin reduced significantly and in a concentration-dependent fashion the expression of the surface activation marker CD11b, as well as the generation of superoxide anion, the rise of intracellular Ca(2+), the release of cytoplasmic granules, and the chemotactic migration. These effects of relaxin were blunted by N(G)-monomethyl-L-arginine and could not be reproduced by inactivated relaxin. Relaxin also increased neutrophil inducible NO synthase expression and NO generation. This study provides evidence that relaxin inhibits the activation of human neutrophils stimulated by different proinflammatory agents. This novel property of relaxin could be of relevance in toning down maternal neutrophil activation during pregnancy, thereby counteracting the occurrence of pregnancy-related disorders such as preeclampsia, which is regarded as an excess maternal inflammatory response to pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.