Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-β regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB–mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II–induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.
Perioperative transfusion in vascular surgical patients is independently associated with increased 30-day morbidity and mortality. Given indeterminate causation, these data suggest the need for a prospective transfusion threshold study in vascular surgical patients.
Myeloid cells are critical for orchestrating regulated inflammation during wound healing. TLRs, particularly TLR4, and its downstream-signaling MyD88 pathway play an important role in regulating myeloid-mediated inflammation. Because an initial inflammatory phase is vital for tissue repair, we investigated the role of TLR4-regulated, myeloid-mediated inflammation in wound healing. In a cutaneous tissue injury murine model, we found that TLR4 expression is dynamic in wound myeloid cells during the course of normal wound healing. We identified that changes in myeloid TLR4 during tissue repair correlated with increased expression of the histone methyltransferase, mixed-lineage leukemia 1 (MLL1), which specifically trimethylates the histone 3 lysine 4 (H3K4me3) position of the TLR4 promoter. Furthermore, we used a myeloid-specific Mll1 knockout (Mll1 f/f Lyz2 Cre+) to determine MLL1 drives Tlr4 expression during wound healing. To understand the critical role of myeloid-specific TLR4 signaling, we used mice deficient in Tlr4 (Tlr4 2/2), Myd88 (Myd88 2/2), and myeloid-specific Tlr4 (Tlr4 f/f Lyz2 Cre+) to demonstrate delayed wound healing at early time points postinjury. Furthermore, in vivo wound myeloid cells isolated from Tlr4 2/2 and Myd88 2/2 wounds demonstrated decreased inflammatory cytokine production. Importantly, adoptive transfer of monocyte/macrophages from wildtype mice trafficked to wounds with restoration of normal healing and myeloid cell function in Tlr4-deficient mice. These results define a role for myeloid-specific, MyD88-dependent TLR4 signaling in the inflammatory response following cutaneous tissue injury and suggest that MLL1 regulates TLR4 expression in wound myeloid cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.