Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
Adaptive immune responses rely on differentiation of CD4 T helper cells into subsets with distinct effector functions best suited for host defence against the invading pathogen. Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified subset, separate from the T helper type 1 (T(H)1) and T helper type 2 (T(H)2) subsets. Synergy between the cytokines transforming growth factor-beta and IL-6 in vitro induces development of T(H)17 cells in mouse and human systems, whereas IL-23 supports expansion of these cells. However, it is not known which conditions in vivo would induce this combination of cytokines. Furthermore, it is enigmatic that a combination of pro-inflammatory and anti-inflammatory cytokines would be required to generate an effector T(H)17 response. Here we show that the relevant physiological stimulus triggering this combination of cytokines is the recognition and phagocytosis of infected apoptotic cells by dendritic cells. Phagocytosis of infected apoptotic cells uniquely triggers the combination of IL-6 and transforming growth factor-beta through recognition of pathogen-associated molecular patterns and phosphatidylserine exposed on apoptotic cells, respectively. Conversely, phagocytosis of apoptotic cells in the absence of microbial signals induces differentiation of the closely related regulatory T cells, which are important for controlling autoimmunity. Blocking apoptosis during infection of the mouse intestinal epithelium with the rodent pathogen Citrobacter rodentium, which models human infections with the attaching and effacing enteropathogenic and enterohaemorrhagic Escherichia coli, impairs the characteristic T(H)17 response in the lamina propria. Our results demonstrate that infected apoptotic cells are a critical component of the innate immune signals instructing T(H)17 differentiation, and point to pathogens particularly adept at triggering apoptosis that might preferentially induce T(H)17-mediated immunity. Because T(H)17 cells have been correlated with autoimmune diseases, investigation of the pathways of innate recognition of infected apoptotic cells might lead to improved understanding of the causative defects in autoimmunity.
Sulfolobus acidocaldarius, strain B12, which harbours a double‐stranded DNA species both as a plasmid and in a linear form, which is integrated at a specific site of the chromosome, produces virus‐like particles upon u.v. irradiation. These particles contain the same circular DNA and a number of coat proteins and are probably surrounded by a lipid membrane. They are lemon shaped, 100 x 60 nm in size and carry tail structures at one pole. The host cell recovers and remains lysogenic after virus production. Though a large fraction of liberated particles is found attached to structures derived from the cells, neither adsorption nor infection of a number of Sulfolobus isolates has so far been observed.
Background & Aims-Several lines of evidence support a role for TLR signaling to protect the intestine from pathogenic infection. We hypothesize that TLR signaling at the level of the intestinal epithelium is critical for mucosal immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.