Barrier tissues are primary targets of environmental stressors and are home to the largest number of antigen-experienced lymphocytes in the body, including commensal-specific T cells. We found that skin-resident commensal-specific T cells harbor a paradoxical program characterized by a type 17 program associated with a poised type 2 state. Thus, in the context of injury and exposure to inflammatory mediators such as interleukin-18, these cells rapidly release type 2 cytokines, thereby acquiring contextual functions. Such acquisition of a type 2 effector program promotes tissue repair. Aberrant type 2 responses can also be unleashed in the context of local defects in immunoregulation. Thus, commensal-specific T cells co-opt tissue residency and cell-intrinsic flexibility as a means to promote both local immunity and tissue adaptation to injury.
Since the discovery of interferon 50 years ago a great deal of progress has been made in understanding how interferons work and how and why they are induced. Key factors in interferon induction are the interferon regulatory factors (IRF). In this review of IRF we aim to show you not only the historical side of the IRF but also the integral, anti-viral and hematopoetic roles of these transcription factors, as well as the sometimes surprising and even forgotten roles that these proteins play, not only in interferon signaling but throughout the immune system and the body as a whole. Further research will no doubt expand the repertoire of these multifunctional proteins even more.
Lee et al. demonstrate that mannose receptor–mediated infection of M2-like dermal macrophages plays a critical role in nonhealing cutaneous infection by L. major. The dermal macrophages are radio resistant and self-renewed and efficiently maintain their M2 phenotype during Th1 immunity.
IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c ؉ macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.