Cushing’s syndrome (CS) is an endocrine disease characterized by excessive adrenocortical steroid production. One of the mainstay pharmacological treatments for CS are steroidogenesis enzyme inhibitors, including the antifungal agent ketoconazole along with metyrapone, mitotane, and aminoglutethimide. Recently, osilodrostat was added to this drug class and approved by the US Food and Drug Administration (FDA) for the treatment of Cushing’s Disease. Steroidogenesis enzyme inhibitors inhibit various enzymes along the cortisol biosynthetic pathway and may be used preoperatively to lower cortisol levels and reduce surgical risk associated with tumor resection or postoperatively when surgery and/or radiation therapies are not curative. Because their selectivities for steroidogenic enzymes vary, they may even be administered in combination to achieve relatively rapid control of severe hypercortisolemia. Unfortunately, all currently available inhibitors are accompanied by serious adverse side effects that limit dosing and often result in treatment failures. Although more commonly known as a general anesthetic induction agent, etomidate is another member of the steroidogenesis enzyme inhibitor drug class. It suppresses cortisol production primarily by inhibiting 11β-hydroxylase and is the only inhibitor that may be given parenterally. However, the sedative-hypnotic actions of etomidate limit its use as an acute management option for CS. Thus, some have recommended that it be used only in intensive care settings. In this review, we discuss the initial development of etomidate as an anesthetic agent, its subsequent development as a treatment for CS, and the recent advances in dosing and drug development that dissociate sedative-hypnotic and adrenostatic drug actions to facilitate CS treatment in non-critical care settings.
Background and Purpose In addition to binding to the classical high‐affinity extracellular benzodiazepine binding site of the GABAA receptor, some benzodiazepines occupy transmembrane inter‐subunit anaesthetic sites that bind etomidate (β+/α− sites) or the barbiturate derivative R‐mTFD‐MPAB (α+/β− and γ+/β− sites). We aimed to define the functional effects of these interactions on GABAA receptor activity and animal behaviour. Experimental Approach With flumazenil blocking classical high‐affinity extracellular benzodiazepine site effects, modulation of GABA‐activated currents by diazepam, midazolam and flurazepam was measured electrophysiologically in wildtype and M2‐15′ mutant α1β3γ2L GABAA receptors. Zebrafish locomotive activity was also assessed in the presence of each benzodiazepine plus flumazenil. Key Results In the presence of flumazenil, micromolar concentrations of diazepam and midazolam both potentiated and inhibited wildtype GABAA receptor currents. β3N265M (M2‐15′ in the β+/α− sites) and α1S270I (M2‐15′ in the α+/β− site) mutations reduced or abolished potentiation by these drugs. In contrast, the γ2S280W mutation (M2‐15′ in the γ+/β− site) abolished inhibition. Flurazepam plus flumazenil only inhibited wildtype receptor currents, an effect unaltered by M2‐15′ mutations. In the presence of flumazenil, zebrafish locomotion was enhanced by diazepam at concentrations up to 30 μM and suppressed at 100 μM, suppressed by midazolam and enhanced by flurazepam. Conclusions and Implications Benzodiazepine binding to transmembrane anaesthetic binding sites of the GABAA receptor can produce positive or negative modulation manifesting as decreases or increases in locomotion, respectively. Selectivity for these sites may contribute to the distinct GABAA receptor and behavioural actions of different benzodiazepines, particularly at high (i.e. anaesthetic) concentrations.
Background Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. Methods The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1β3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1β3γ2L GABAA receptors by 3[H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. Results At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by 3[H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration–response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. Conclusions At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.