The dipole P(F) of systems with periodic boundary conditions in a static electric field F is applied to one-dimensional Peierls-Hubbard models for organic charge-transfer (CT) salts. Exact results for P(F) are obtained for finite systems of N=14 and 16 sites that are almost converged to infinite chains in deformable lattices subject to a Peierls transition. The electronic polarizability per site, alpha(el)=(partial differential P/partial differential F)0, of rigid stacks with alternating transfer integrals t(1+/-delta) diverges at the neutral-ionic transition for delta=0 but remains finite for delta>0 in dimerized chains. The Peierls or dimerization mode couples to charge fluctuations along the stack and results in large vibrational contributions alpha(vib) that are related to partial differential P/ partial differential delta and that peak sharply at the Peierls transition. The extension of P(F) to correlated electronic states yields the dielectric response kappa of models with neutral-ionic or Peierls transitions, where kappa peaks >100 are found with parameters used previously for variable ionicity rho and vibrational spectra of CT salts. The calculated kappa accounts for the dielectric response of CT salts based on substituted TTF's (tetrathiafulvalene) and substituted CA's (chloranil). The role of lattice stiffness appears clearly in models: soft systems have a Peierls instability at small rho and continuous crossover to large rho, while stiff stacks such as TTF-CA have a first-order transition with discontinuous rho that is both a neutral-ionic and Peierls transition. The transitions are associated with tuning the electronic ground state of insulators via temperature or pressure in experiments, or via model parameters in calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.