The catch composition of bottom trawls is commonly refined and improved through changes in codend design. Measures like reducing the number of meshes in codend circumference or turning diamond netting by 90 degrees are well known to improve the size selectivity of fish species with rounded cross-sectional shape. Based on this we speculated whether the same measures, if applied in other parts of a bottom trawl, would provide similar benefits as in the codend. Therefore, experiments were carried out by deploying these changes to the trawl extension piece in a Mediterranean bottom trawl fishery. However, for European hake and monkfish, results showed no indication of improved selectivity or catch pattern compared to the standard extension piece in the trawl. Contrary, for red mullet, one of the most important species in this fishery, reducing the number of meshes in the circumference of the extension piece jeopardized the size selection obtained in the trawl with a standard extension piece. The lesson learnt from this study was that the design changes that work for the codend do not necessarily work for other parts of the trawl. In fact, they can even have negative effects.
In the Mediterranean Sea, where bottom trawling for demersal species is the most important fishery in terms of landings, around 75% of the assessed fish stocks are overfished. Its status as one of the world’s most heavily exploited seas and the one subject to the highest trawling pressure has become a global concern. An extensive review of bottom trawl selectivity studies was performed to assess the sustainability of this fishery in the Mediterranean; the selectivity parameters were collected from 93 peer-reviewed publications of 10 countries, totalling 742 records and 65 species. The review highlighted that i) the catch of bottom trawls commonly employed in the Mediterranean, even complying with current regulations on codend meshes, still includes immature individuals for 64-68% of the species investigated, and individuals under the minimum conservation reference size (MCRS) for 78% of the species investigated, and that ii) the MCRS set for 59% of the species analyzed is well below their length at first maturity, and is therefore ecologically inadequate. Although square-mesh codends are slightly more selective, the models developed herein demonstrate that improving size and species selectivity would require considerably larger meshes, which may significantly reduce profitability. The urgent need to reduce the biological impacts of bottom trawling in the Mediterranean should be addressed by promoting the adoption of more ecologically sustainable fishing gears through the introduction of more selective meshes or gear modifications.
Interactions between fishing and dolphins can be detrimental, since on one hand dolphins can be lethally entangled by nets and trawls, and on the other dolphins can predate fish caught by nets. For dolphins, this interaction can be dangerous as they can be wounded or accidentally killed; for fishers, the predation of their catch results in economic losses due to reduced quantity and/or quality of catches and damage to fishing gear. During July and November 2020, we surveyed the “dolphin–fisheries conflict” through compiling 209 fisher interviews from nine locations in Italy and Croatia. Fishers mentioned the common bottlenose dolphin (Tursiops truncatus) as the species primarily interacting with fishing, with the major issue being catch damage by predation. The interaction probability varied among gears and seasons, with some fishing activities (e.g., passive nets) more affected than others (e.g., bottom trawls), especially in terms of economic loss (1000–10,000 €/year on average). More than 70% of the fishers claimed that dolphin populations have increased over the last 10 years, in different degrees and based on different areas. Dolphin bycatch rates are generally low; however, 34.6% of respondents reported having captured at least one dolphin during their career. The fishers’ attitude towards acoustic deterrents (“pingers”) as a mitigation measure revealed that few of them were aware of these devices or were using them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.