BackgroundCisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT). In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC), but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs) induced by cisplatin in TTC and their contribution to TTC hypersensitivity.ResultsWe observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC.ConclusionOur data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.
The DNA repair protein O 6 -methylguanine-DNA methyltransferase (MGMT) is an important suicide enzyme involved in the defense against O 6 -alkylating mutagens. It also plays a role in the resistance of tumors to anticancer drugs targeting the O 6 -position of guanine, such as temozolomide and fotemustine.
O(6)-Substituted guanine derivatives are powerful agents used for tumor cell sensitization by inhibition of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). To provide targeted accumulation of MGMT inhibitors in tumor tissue as well as tools for in vivo imaging, we synthesized iodinated C(8)-alkyl-linked glucose conjugates of 2-amino-6-(5-iodothenyl)-9H-purine (O(6)-(5-iodothenyl) guanine, ITG) and 2-amino-6-(3-iodobenzyloxy)-9H-purine (O(6)-(5-iodobenzyl) guanine, IBG). These compounds have MGMT inhibitor constants (IC(50) values) of 0.8 and 0.45 microM for ITGG and IBGG, respectively, as determined in HeLa S3 cells after 2-h incubation with inhibitor. To substantiate that the (131)I-(hetero)arylmethylene group at the O(6)-position of guanine is transferred to MGMT, both the glucose conjugated inhibitors ITGG and IBGG and the corresponding nonglucose conjugated compounds ITG and IBG were labeled with iodine-131. The radioiodinations of all compounds with [(131)I]I(-) were performed with radiochemical yields of >70% for the destannylation of the corresponding tri-n-butylstannylated precursors. The binding ability of [(131)I]ITGG, [(131)]IBGG, [(131)I]ITG, and [(131)I]IBG to purified MGMT was tested. All radioactive compounds were substrates for MGMT, as demonstrated using a competitive repair assay. The newly synthesized radioactive inhibitors were utilized to study ex vivo biodistribution in mice, and the tumor-to-blood ratio of tissue uptake of [(131)I]IBG and [(131)I]IBGG was determined to be 0.24 and 0.76 after 0.5 h, respectively.
Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via posttranslational modifications (PTMs). While the relevance of p53 Cterminal acetylation for transcriptional regulation is well-defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylaces (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB binding protein (CBP)/p300 and the presence of C-terminally acetylated p53 in complex with the pro-apoptotic BCL2 antagonist/killer (BAK) protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.