We consider a Cahn-Hilliard-Boussinesq system with positive heat diffusivity and singular potential on a two-dimensional bounded domain with suitable boundary conditions. For the corresponding initial and boundary value problem we prove the existence of strong solutions and the well-posedness for weak solutions. Then we set the diffusivity equal to zero. In this case, the model can be viewed as an approximation of the two-dimensional compressible Navier-Stokes-Cahn-Hilliard system proposed in [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.