The developments in the internet of things (IoT), artificial intelligence (AI), and cyber-physical systems (CPS) are paving the way to the implementation of smart factories in what is commonly recognized as the fourth industrial revolution. In the manufacturing sector, these technological advancements are making Industry 4.0 a reality, with data-driven methodologies based on machine learning (ML) that are capable of extracting knowledge from the data collected by sensors placed on production machines. This is particularly relevant in plastic injection molding, with the objective of monitoring the quality of molded products from the parameters of the production process. In this regard, the main contribution of this paper is the systematic comparison of ML techniques to predict the quality classes of plastic molded products, using real data collected during the production process. Specifically, we compare six different classifiers on the data coming from the production of plastic road lenses. To run the comparison, we collected a dataset composed of the process parameters of 1451 road lenses. On such samples, we tested a multi-class classification, providing a statistical analysis of the results as well as of the importance of the input features. Among the tested classifiers, the ensembles of decision trees, i.e., random forest and gradient-boosted trees (GBT), achieved 95% accuracy in predicting the quality classes of molded products, showing the viability of the use of ML-based techniques for this purpose. The collected dataset and the source code of the experiments are available in a public, open-access repository, making the presented research fully reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.