BackgroundTwo new subclades of influenza A(H3N2) viruses became prominent during the 2014‐2015 Northern Hemisphere influenza season. The HA glycoproteins of these viruses showed sequence changes previously associated with alterations in receptor‐binding properties. To address how these changes influence virus propagation, viruses were isolated and propagated in conventional MDCK cells and MDCK‐SIAT1 cells, cells with enhanced expression of the human receptor for the virus, and analysed at each passage.MethodsGene sequence analysis was undertaken as virus was passaged in conventional MDCK cells and MDCK‐SIAT1 cells. Alterations in receptor recognition associated with passage of virus were examined by haemagglutination assays using red blood cells from guinea pigs, turkeys and humans. Microneutralisation assays were performed to determine how passage‐acquired amino acid substitutions and polymorphisms affected virus antigenicity.ResultsViruses were able to infect MDCK‐SIAT1 cells more efficiently than conventional MDCK cells. Viruses of both the 3C.2a and 3C.3a subclades showed greater sequence change on passage in conventional MDCK cells than in MDCK‐SIAT1 cells, with amino acid substitutions being seen in both HA and NA glycoproteins. However, virus passage in MDCK‐SIAT1 cells at low inoculum dilutions showed reducing infectivity on continued passage.ConclusionsCurrent H3N2 viruses should be cultured in the MDCK‐SIAT1 cell line to maintain faithful replication of the virus, and at an appropriate multiplicity of infection to retain infectivity.
Influenza virus (InfV) infection during pregnancy is a known risk factor for neurodevelopment abnormalities in the offspring, including the risk of schizophrenia, and has been shown to result in an abnormal behavioral phenotype in mice. However, previous reports have concentrated on neuroadapted influenza strains, whereas increased schizophrenia risk is associated with common respiratory InfV. In addition, no specific mechanism has been proposed for the actions of maternal infection on the developing brain that could account for schizophrenia risk. We identified two common isolates from the community with antigenic configurations H3N2 and H1N1 and compared their effects on developing brain with a mouse modified-strain A/WSN/33 specifically on the developing of dopaminergic neurons. We found that H1N1 InfV have high affinity for dopaminergic neurons in vitro, leading to nuclear factor kappa B activation and apoptosis. Furthermore, prenatal infection of mothers with the same strains results in loss of dopaminergic neurons in the offspring, and in an abnormal behavioral phenotype. We propose that the well-known contribution of InfV to risk of schizophrenia during development may involve a similar specific mechanism and discuss evidence from the literature in relation to this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.