Lack of immunological tolerance against self-antigens results in autoimmune disorders. During onset of autoimmunity, dendritic cells (DCs) are thought to be critical for priming of self-reactive T cells that have escaped tolerance induction. However, because DCs can also induce T cell tolerance, it remains unclear whether DCs are required under steady-state conditions to prevent autoimmunity. To address this question, we crossed CD11c-Cre mice with mice that express diphtheria toxin A (DTA) under the control of a loxP-flanked neomycin resistance (neoR) cassette from the ROSA26 locus. Cre-mediated removal of the neoR cassette leads to DTA expression and constitutive loss of conventional DCs, plasmacytoid DCs, and Langerhans cells. These DC-depleted (ΔDC) mice showed increased frequencies of CD4 single-positive thymocytes and infiltration of CD4 T cells into peripheral tissues. They developed spontaneous autoimmunity characterized by reduced body weight, splenomegaly, autoantibody formation, neutrophilia, high numbers of Th1 and Th17 cells, and inflammatory bowel disease. Pathology could be induced by reconstitution of wild-type (WT) mice with bone marrow (BM) from ΔDC mice, whereas mixed BM chimeras that received BM from ΔDC and WT mice remained healthy. This demonstrates that DCs play an essential role to protect against fatal autoimmunity under steady-state conditions.
Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression.
The proto-oncogene c-myc is transcribed from a dual promoter P1/P2, with transcription initiation sites 160 base pairs apart. Here we have studied the transcriptional activation of both promoters on chromatin templates. c-myc chromatin was reconstituted on stably transfected, episomal, Epstein-Barr virus-derived vectors in a B cell line. Episomal P1 and P2 promoters showed only basal activity but were strongly inducible by histone deacetylase inhibitors. The effect of promoter mutations on c-myc activity, chromatin structure, and E2F binding was studied. The ME1a1 binding site between P1 and P2 was required for the maintenance of an open chromatin configuration of the dual c-myc promoters. Mutation of this site strongly reduced the sensitivity of the core promoter region of P1/P2 to micrococcal nuclease and prevented binding of polymerase II (pol II) at the P2 promoter. In contrast, mutation of the P2 TATA box also abolished binding of pol II at the P2 promoter but did not affect the chromatin structure of the P1/P2 core promoter region. The E2F binding site adjacent to ME1a1 is required for repression of the P2 promoter but not the P1 promoter, likely by recruitment of histone deacetylase activity. Chromatin precipitation experiments with E2F-specific antibodies revealed binding of E2F-1, E2F-2, and E2F-4 to the E2F site of the c-myc promoter in vivo if the E2F site was intact. Taken together, the analyses support a model with a functional hierarchy for regulatory elements in the c-myc promoter region; binding of proteins to the ME1a1 site provides a nucleosome-free region of chromatin near the P2 start site, binding of E2F results in transcriptional repression without affecting polymerase recruitment, and the TATA box is required for polymerase recruitment.The nucleosomal structure of promoter regions constitutes an essential regulatory mechanism of eukaryotic gene repression. Gene activation is accompanied by perturbations or alterations of the nucleosomal structure like remodeling and acetylation of chromatin (1, 2). A first critical step for activating a gene locus seems to be liberating the promoter region from histone-mediated repression (1, 2). The transcription complex seems not to be recruited to the promoter until positioned nucleosomes have been disrupted by the concerted action of invading chromatin-remodeling and trans-acting factors (1, 2). A large number of chromatin remodeling activities have been isolated and characterized biochemically. The properties of remodeled nucleosomes include increased accessibility of DNA to DNA-binding proteins throughout the nucleosome (3-5), rotational phasing of DNA on the histone octamer (6), reduction of the total length of DNA per nucleosome (7), octamer susceptibility to displacement in trans (8), nucleosome movement without disruption or trans-displacement of histone octamer (9), and other effects.Chromatin remodeling activities transfer promoters into a configuration that is accessible for sequence-specific binding of transcription factors and the recruitmen...
Eosinophils are potent effector cells associated with allergic inflammation and parasite infections. However, limited information exists about their turnover, migration, and survival in vivo. To address these important questions, we determined murine eosinophil turnover under steady state and inflammatory conditions by flow cytometric analysis of BrdU incorporation and analyzed their migration pattern and survival in different tissues after adoptive transfer into recipient mice. In naive mice ∼50% of bone marrow eosinophils were labeled with BrdU during a 15-h pulse, whereas only 10% of splenic eosinophils were labeled within this time frame. Unexpectedly, the rate of eosinophil production did not change during acute infection with the helminth parasite Nippostrongylus brasiliensis despite massive eosinophilia in several tissues. Eosinophils present in lung and peritoneum remained largely BrdU negative, indicating that eosinophilia in end organs was mainly caused by increased survival of already existing eosinophils rather than increased production of new eosinophils in the bone marrow. Adoptive transfer experiments revealed that eosinophils preferentially migrated to the peritoneum in a macrophage-independent and pertussis toxin-sensitive manner, where they survived for several days. Peritoneal eosinophils expressed high levels of the inhibitory receptor Siglec-F, released less eosinophil peroxidase compared with eosinophils from the spleen, and could recirculate to other organs. These results demonstrate that the peritoneum serves as reservoir for eosinophils.
The nucleosomal structure of active and inactive cmyc genes has been analyzed in detail in undifferentiated and differentiated cells of the promyelocytic leukemia cell line HL60. The c-myc P2 promoter was never found in nucleosomal configuration, no matter whether c-myc was expressed or not. Differences in the nucleosomal structure, however, were found in the promoter upstream region proximal to a previously described DNase I-hypersensitive site I, at the P0 promoter, and at the P1 promoter and upstream thereof. In these regions nucleosomes were detected in differentiated but not undifferentiated HL60 cells. Similar patterns of nucleosomes as found for active and inactive c-myc genes in HL60 cells were found for active and inactive episomal c-myc genes in stably transfected B cell lines. In these cell lines three activation stages could be described for episomal c-myc constructs: (i) uninducible, (ii) inducible, and (iii) induced. Significant differences in the nucleosomal structure of c-myc were observed for the uninducible and inducible stages, but not for the inducible and induced stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.