Humans alter biogeochemical cycles of essential elements such as phosphorus (P). Prediction of ecosystem consequences of altered elemental cycles requires integration of ecology, evolutionary biology and the framework of ecological stoichiometry. We studied micro-evolutionary responses of a herbivorous rotifer to P-limited food and the potential consequences for its population demography and for ecosystem properties. We subjected field-derived, replicate rotifer populations to P-deficient and P-replete algal food, and studied adaptation in common garden transplant experiments after 103 and 209 days of selection. When fed P-limited food, populations with a Plimitation selection history suffered 37% lower mortality, reached twice the steady state biomass, and reduced algae by 40% compared to populations with a P-replete selection history. Adaptation involved no change in rotifer elemental composition but reduced investment in sex. This study demonstrates potentially strong eco-evolutionary feedbacks from shifting elemental balances to ecosystem properties, including grazing pressure and the ratio of grazer:producer biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.