Melatonin was measured in a species of aerobic photosynthetic bacteria, Erythrobacter longus, grown in either constant light or constant dark. A radioimmunoassay was used to quantify melatonin levels and thin-layer chromatography to confirm the identity of melatonin immunoactivity. Melatonin levels were significantly higher (nearly 2.3-fold) in the dark-grown than in the light-grown samples. Also, the homogenates of the dark-grown bacteria retained melatonin-producing enzymatic activity, whereas the light-grown homogenates did not; melatonin levels extracted from the dark-grown homogenates increased with increasing extraction time, reaching as high as 29.2 ng.mg-1 protein at 120 min. Removal of membrane fragments from homogenates did not influence melatonin levels in light-grown homogenate, but this procedure increased melatonin levels in dark-grown homogenate, indicating that at least some of the enzymes in the pathway of melatonin production are not membrane-bound. This study is the second to demonstrate the presence of melatonin at the prokaryotic level, supporting the evidence that melatonin appeared very early in evolution. Its function in prokaryotes has not been determined, but may relate to its antioxidative actions.
The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR 369-, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance. The one transcriptional regulator that was both underexpressed in GR 369larvae and consistently overexpressed in cortisol-treated larvae was klf9. We therefore used CRISPR-Cas9-mediated mutation of klf9 and RNA-seq to assess Klf9-dependent gene expression in both normal and cortisol-treated larvae. Our results indicate that Klf9 contributes significantly to the transcriptomic response to chronic cortisol exposure, mediating the upregulation of proinflammatory genes that we reported previously. The vertebrate hypothalamus-pituitary-adrenal (HPA) axis orchestrates physiological, behavioral, and metabolic adjustments required for homeostasis, by dynamically regulating production and secretion of adrenal steroids known as glucocorticoids. In humans the primary glucocorticoid is cortisol, the biological activity of which is mediated by two regulatory proteins in the nuclear receptor family, the ubiquitous glucocorticoid receptor (GR) and the more tissue-restricted mineralocorticoid receptor (MR). The GR binds cortisol less avidly than the MR and is thus more dynamically regulated over the normal physiological range of cortisol fluctuations 1,2. The GR and MR function both as transcription factors and as non-nuclear signaling proteins, including in the central nervous system where both proteins are highly expressed 1-5. Given that the GR is more widely expressed and more dynamically regulated by cortisol, it is generally thought to be the principal mediator of cortisolinduced genomic responses to circadian rhythms and acute stress 5. An important question for understanding GR function is what downstream transcriptional regulatory genes does it regulate, and to what end? Answering this question is not only important for understanding the physiological function and regulation of the GR, but also for deciphering the gene regulatory networks that orchestrate adaptive developmental programming in response to chronic glucocorticoid exposure such as occurs with chronic early life stress 6. The zebrafish has recently emerged as a model system well-suited to investigating the developmental functions of glucocorticoid signaling and mechanisms underlying stress-induced developmental programming 7-...
Essentially nothing is known about the molecular underpinnings of crustacean circadian clocks. The genome of Daphnia pulex, the only crustacean genome available for public use, provides a unique resource for identifying putative circadian proteins in this species. Here, the Daphnia genome was mined for putative circadian protein genes using Drosophila melanogaster queries. The sequences of core clock (e.g. CLOCK, CYCLE, PERIOD, TIMELESS and CRYPTOCHROME 2), clock input (CRYPTOCHROME 1) and clock output (PIGMENT DISPERSING HORMONE RECEPTOR) proteins were deduced. Structural analyses and alignment of the Daphnia proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Comparisons of the Daphnia proteins with other sequences showed that they are, in most cases, more similar to homologs from other species, including vertebrates, than they are to those of Drosophila. The presence of both CRYPTOCHROME 1 and 2 in Daphnia suggests the organization of its clock may be more similar to that of the butterfly Danaus plexippus than to that of Drosophila (which possesses CRYPTOCHROME 1 but not CRYPTOCHROME 2). These data represent the first description of a putative circadian system from any crustacean, and provide a foundation for future molecular, anatomical and physiological investigations of circadian signaling in Daphnia.
Melatonin was measured over 24 hr in the eyestalks of Uca pugilator by means of radioimmunoassay; crabs were acclimatized either to a LD 12:12 photoperiod or constant darkness. A significant peak occurred at 13.00 hr in the LD 12:12 crabs. A photophase peak in melatonin has only been reported in one other species, also a crustacean. In constant darkness, two melatonin peaks occurred, one at 16.00 hr and the other 12 hr later; these results suggest that the melatonin cycle is a true circadian rhythm. HPLC with ultraviolet-visible detection was used to confirm the identity of melatonin immunoactivity. The influence of melatonin on regeneration of the walking legs was also examined: eyestalks were either removed or left intact, and limb bud length was measured every other day for at least 17 days in control and melatonin-treated crabs (60 microg ml(-1) seawater). Melatonin significantly increased the rate of limb regeneration in both eyestalk-intact and eyestalk-removed groups; this is contrary to results of regeneration studies in other phyla, in which similar melatonin concentrations inhibited regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.