Group 1 capsules of Escherichia coli are similar to the capsules produced by strains of Klebsiella spp. in terms of structure, genetics, and patterns of expression. The striking similarities between the capsules of these organisms prompted a more detailed investigation of the cps loci encoding group 1 capsule synthesis. Six strains of K. pneumoniae and 12 strains of E. coli were examined. PCR analysis showed that the clusters in these strains are conserved in their chromosomal locations. A highly conserved block of four genes,orfX-wza-wzb-wzc, was identified in all of the strains. Thewza and wzc genes are required for translocation and surface assembly of E. coli K30 antigen. The conservation of these genes points to a common pathway for capsule translocation. A characteristic JUMPstart sequence was identified upstream of each cluster which may function in conjunction with RfaH to inhibit transcriptional termination at a stem-loop structure found immediately downstream of the “translocation-surface assembly” region of the cluster. Interestingly, the sequence upstream of thecps clusters in five E. coli strains and oneKlebsiella strain indicated the presence of IS elements. We propose that the IS elements were responsible for the transfer of thecps locus between organisms and that they may continue to mediate recombination between strains.
SummaryEscherichia coli group 1 capsules are important virulence determinants, yet little is known about the transcriptional organization or regulation of their biosynthetic ( cps ) operons. Transcription of the prototype serotype K30 cluster is modulated by the JUMPStart-RfaH antitermination mechanism, with the cps promoter being localized to a region immediately upstream of the JUMPStart sequence. A putative stem-loop structure located within the K30 cps cluster separates conserved genes with products that are required for surface expression of capsule from serotype-specific genes encoding enzymes for polymer repeat-unit synthesis and polymerization. This putative stem-loop structure significantly reduces transcription in a termination-probe vector and may contribute to differential expression of the cps genes. Previous work indicated that increased amounts of group 1 capsular polysaccharide synthesis resulted from the overexpression of the Rcs (regulator of capsule synthesis) proteins. However, neither overexpression of the transcriptional activator RcsB nor an rcsB :: aadA chromosomal insertion altered the level of transcription measured by cps::lacZ fusions. In the group 1 strains examined, an RcsAB box was found immediately upstream of galF , a gene involved in the production of sugar nucleotide precursors. Overexpression of RcsB was found to result in a threefold increase in transcription of a galF::lacZ chromosomal fusion. Moreover, overexpression of GalF gave rise to a two-to threefold increase in cell-free as well as cellassociated capsule, without affecting cps::lacZ activity. These results indicate that transcription of the E. coli group 1 capsule cluster itself is not regulated by the Rcs system and may, in fact, be constitutive. However, the Rcs system can potentially influence levels of capsular polysaccharide production by increasing galF transcription and influencing the available pool of biosynthetic precursors.
Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas . However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.
Escherichia coli group 1 K antigens form a tightly associated capsule structure on the cell surface. Although the general features of the early steps in capsular polysaccharide biosynthesis have been described, little is known about the later stages that culminate in assembly of a capsular structure on the cell surface. Group 1 capsule biosynthesis gene clusters (cps) in E. coli and Klebsiella pneumoniae include a conserved open reading frame, wzi. The wzi gene is the first of a block of four conserved genes (wzi-wza-wzb-wzc) found in all group 1 K-antigen serotypes. Unlike wza, wzb, and wzc homologs that are found in gene clusters responsible for production of exopolysaccharides (i.e., predominantly cell-free polymer) in a range of bacteria, wzi is found only in systems that assemble capsular polysaccharides. The predicted Wzi protein shows no similarity to any other known proteins in the databases, but computer analysis of Wzi predicted a cleavable signal sequence. Wzi was expressed with a C-terminal hexahistidine tag, purified, and used for the production of specific antibodies that facilitated localization of Wzi to the outer membrane. Circular dichroism spectroscopy indicates that Wzi consists primarily of a -barrel structure, and dynamic light scattering studies established that the protein behaves as a monomer in solution. A nonpolar wzi chromosomal mutant retained a mucoid phenotype and remained sensitive to lysis by a K30-specific bacteriophage. However, the mutant showed a significant reduction in cell-bound polymer, with a corresponding increase in cell-free material. Furthermore, examination of the mutant by electron microscopy showed that it lacked a coherent capsule structure. It is proposed that the Wzi protein plays a late role in capsule assembly, perhaps in the process that links high-molecular-weight capsule to the cell surface.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.