With new market developments and e-commerce, there is an increased use of and interest in automation for order picking. This paper presents a systematic review and content analysis of the literature. It has the purpose of understanding the relevant performance aspects for automated, or partly automated, OPSs and identifying the studied links between design and performance, i.e. identifying which combinations of design aspects and performance aspects have been studied in previous research. For this purpose, 74 papers were selected and reviewed. From the review, it is clear that there has been an increased number of papers dealing with the performance of automated, or partly automated, OPSs in recent years. Moreover, there are differences between the different OPS types, but, overall, the performance categories of throughput, lead time, and operational efficiency have received the most attention in the literature. The paper identifies links between design and performance that have been studied, as well as links that appear to be under-researched. For academics, this paper synthesises the current knowledge on the performance of automation in OPSs and identifies opportunities for future research. For practitioners, the paper provides knowledge that can support the decision-making process of automation in OPSs.
This work demonstrates the advantages of using laser powder bed fusion for producing a rudder bulb of a moth class sailing racing boat via laser powder bed fusion (LPBF). The component was designed to reduce weight using an AlSi7Mg0.6 alloy and incorporated a biomimetic surface texture for drag reduction. For the topological optimization, the component was loaded structurally due to foil wing’s lift action as well as from the environment due to hydrodynamic resistance. The aim was to minimize core mass while preserving stiffness and the second to benefit from drag reduction capability in terms of passive surface behavior. The external surface texture is inspired by scales of the European sea bass. Both these features were embedded to the component and produced by LPBF in a single run, with the required resolution. Drag reduction was estimated in the order of for free stream velocity of . The production of the final part resulted in limited geometrical error with respect to scales 3D model, with the desired mechanical properties. A reduction in weight of approximately with respect to original full solid model from 452 to 190 g was achieved thanks to core topology optimization. Sandblasting was adopted as finishing technique since it was able to improve surface quality while preserving fish scale geometries. The feasibility of producing the biomimetic surfaces and the weight reduction were validated with the produced full-sized component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.