Additive manufacturing represents a powerful tool for the direct fabrication of lightweight and porous structures with tuneable properties. In this study, a fused deposition modelling/3D fibre deposition technique was considered for designing 3D nanocomposite scaffolds with specific architectures and tailored biological, mechanical, and mass transport properties. 3D poly(caprolactone) (PCL)/hydroxyapatite (HA) nanocomposite scaffolds were designed for bone tissue engineering. An optimisation design strategy for the additive manufacturing processes based on extrusion/injection methods was at first extended to the development of the PCL/HA scaffolds. Further insight into the effect of the process parameters on the mechanical properties and morphological features of the nanocomposite scaffolds was provided. The nanocomposite structures were analysed at different levels, and the possibility of designing 3D customised scaffolds for mandibular defect regeneration (i.e., symphysis and ramus) was also reported.
Enabling technologies that drive Industry 4.0 and smart factories are pushing in new equipment and system development also to prevent human workers from repetitive and non-ergonomic tasks inside manufacturing plants. One of these tasks is the order-picking which consists in collecting parts from the warehouse and distributing them among the workstations and vice-versa. That task can be completely performed by a Mobile Manipulator that is composed by an industrial manipulator assembled on a Mobile Robot. Although the Mobile Manipulators implementation brings advantages to industrial applications, they are still not widely used due to the lack of dedicated standards on control and safety. Furthermore, there are few integrated solutions and no specific or reference point allowing the safe integration of mobile robots and cobots (already owned by company). This work faces the integration of a generic mobile robot and collaborative robot selected from an identified set of both systems. The paper presents a safe and flexible mechatronic interface developed by using MBSE principles, multi-domain modeling, and adopting preliminary assumptions on the hardware and software synchronization level of both involved systems. The interface enables the re-using of owned robot systems differently from their native tasks. Furthermore, it provides an additional and redundant safety level by enabling power and force limiting both during cobot positioning and control system faulting.
The concept of magnetic guidance has opened a wide range of perspectives in the field of tissue regeneration. Accordingly, the aim of the current research is to design magnetic responsive scaffolds for enhanced bone tissue regeneration. Specifically, magnetic nanocomposite scaffolds are additively manufactured using 3D fibre deposition technique. The mechanical and magnetic properties of the fabricated scaffolds are first assessed. The role of magnetic features on the biological performances is properly analyzed.
Human–robot collaboration (HRC) solutions are replacing classic industrial robot due to the possibility of realizing more flexible production systems. Collaborative robot systems, named cobot, can work side by side with humans combining their strengths. However, obtaining an efficient HRC is not trivial; indeed, the potential advantages of the collaborative robotics increase as complexity increases. In this context, the main challenge is to design the layout of collaborative workplaces facing the facility layout problem and ensuring the safety of the human being. To move through the high number of safety standards could be very tiring and unproductive. Therefore, in this work a list of key elements, linked to reference norms and production needs, characterizing the collaborative workplace has been identified. Then, a graph-based approach has been used in order to organize and easily manage this information. The management by means graphs has facilitated the implementation of the acquired knowledge in a code, developed in Matlab environment. This code aims to help the designer in the layout organization of human–robot collaborative workplaces in standards compliance. The paper presents the optimization code, named Smart Positioner, and the operation is explained through a workflow diagram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.