Cebpa encodes a transcription factor (TF) that plays an instructive role in the development of multiple myeloid lineages. The expression of Cebpa itself is finely modulated, as Cebpa is expressed at high and intermediate levels in neutrophils and macrophages respectively and downregulated in non-myeloid lineages. The cis -regulatory logic underlying the lineage-specific modulation of Cebpa ’s expression level is yet to be fully characterized. Previously, we had identified 6 new cis -regulatory modules (CRMs) in a 78kb region surrounding Cebpa . We had also inferred the TFs that regulate each CRM by fitting a sequence-based thermodynamic model to a comprehensive reporter activity dataset. Here, we report the cis -regulatory logic of Cebpa CRMs at the resolution of individual binding sites. We tested the binding sites and functional roles of inferred TFs by designing and constructing mutated CRMs and comparing theoretical predictions of their activity against empirical measurements in a myeloid cell line. The enhancers were confirmed to be activated by combinations of PU.1, C/EBP family TFs, Egr1, and Gfi1 as predicted by the model. We show that silencers repress the activity of the proximal promoter in a dominant manner in G1ME cells, which are derived from the red-blood cell lineage. Dominant repression in G1ME cells can be traced to binding sites for GATA and Myb, a motif shared by all of the silencers. Finally, we demonstrate that GATA and Myb act redundantly to silence the proximal promoter. These results indicate that dominant repression is a novel mechanism for resolving hematopoietic lineages. Furthermore, Cebpa has a fail-safe cis -regulatory architecture, featuring several functionally similar CRMs, each of which contains redundant binding sites for multiple TFs. Lastly, by experimentally demonstrating the predictive ability of our sequence-based thermodynamic model, this work highlights the utility of this computational approach for understanding mammalian gene regulation.
Mutations in the survival of motor neuron gene (SMN1) are responsible for spinal muscular atrophy, a fatal neuromuscular disorder. Mice carrying a homozygous deletion of Smn exon 7 directed to skeletal muscle (HSA-Cre, Smn F7/F7 mice) present clinical features of human muscular dystrophies for which new therapeutic approaches are highly warranted. Herein we demonstrate that tail vein transplantation of mouse amniotic fluid stem (AFS) cells enhances the muscle strength and improves the survival rate of the affected animals. Second, after cardiotoxin injury of the Tibialis Anterior, only AFS-transplanted mice efficiently regenerate. Most importantly, secondary transplants of satellite cells (SCs) derived from treated mice show that AFS cells integrate into the muscle stem cell compartment and have long-term muscle regeneration capacity indistinguishable from that of wild-type-derived SC. This is the first study demonstrating the functional and stable integration of AFS cells into the skeletal muscle, highlighting their value as cell source for the treatment of muscular dystrophies.
Functional smooth muscle engineering requires isolation and expansion of smooth muscle cells (SMCs), and this process is particularly challenging for visceral smooth muscle tissue where progenitor cells have not been clearly identified. Herein we showed for the first time that efficient SMCs can be obtained from human amniotic fluid stem cells (hAFSCs). Clonal lines were generated from c-kit(+) hAFSCs. Differentiation toward SM lineage (SMhAFSCs) was obtained using a medium conditioned by PDGF-BB and TGF-β1. Molecular assays revealed higher level of α smooth muscle actin (α-SMA), desmin, calponin, and smoothelin in SMhAFSCs when compared to hAFSCs. Ultrastructural analysis demonstrated that SMhAFSCs also presented in the cytoplasm increased intermediate filaments, dense bodies, and glycogen deposits like SMCs. SMhAFSC metabolism evaluated via mass spectrometry showed higher glucose oxidation and an enhanced response to mitogenic stimuli in comparison to hAFSCs. Patch clamp of transduced hAFSCs with lentiviral vectors encoding ZsGreen under the control of the α-SMA promoter was performed demonstrating that SMhAFSCs retained a smooth muscle cell-like electrophysiological fingerprint. Eventually SMhAFSCs contractility was evident both at single cell level and on a collagen gel. In conclusion, we showed here that hAFSCs under selective culture conditions are able to give rise to functional SMCs.
The hanging drop enables the myofibres to be kept in suspension for at least 9 days, and thus, allows SCs and their niche to interact each other for prolonged time. In a consequence, SCs cultured in hanging drop maintain expression of Pax7 while those cultured in a traditional adhesion culture, that is, devoid of signals from the original niche, activate and preferentially undergo differentiation as manifested by expression of MyoD. Thus, the innovative method of SCs culturing in the hanging drop system may serve as a useful tool to study the fate of different subpopulations of these cells in their anatomical location and to determine reciprocal interactions between them and their niche.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.