SUMMARYThe mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5′ UTR. mTORC1 also controls ATF4 translation through uORFs, but independently of changes in eIF2α phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery.
Active iodide (I−) transport in both the thyroid and some extrathyroidal tissues is mediated by the N a+/I− symporter (NIS). In the thyroid, NIS-mediated I− uptake plays a pivotal role in thyroid hormone (TH) biosynthesis. THs are key during embryonic and postembryonic development and critical for cell metabolism at all stages of life. The molecular characterization of NIS in 1996 and the use of radioactive I− isotopes have led to significan advances in the diagnosis and treatment of thyroid cancer and provide the molecular basis for studies aimed at extending the use of radioiodide treatment in extrathyroidal malignancies. This review focuses on the most recent finding on I− homeostasis and I− transport deficiency-causin NIS mutations, as well as current knowledge of the structure/function properties of NIS and NIS regulatory mechanisms. We also discuss employing NIS as a reporter gene using viral vectors and stem cells in imaging, diagnostic, and therapeutic procedures.
Thyroid dysfunction affects 1–4% of the population worldwide, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that KCNQ1 and KCNE2 form a TSH-stimulated, constitutively-active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 impaired thyroid iodide accumulation up to 8-fold, impaired maternal milk ejection and halved milk T4 content, causing hypothyroidism, 50% reduced litter size, dwarfism, alopecia, goiter, and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by T3/T4 administration to pups, by supplementing dams with T4 pre- and postpartum, or by pre-weaning surrogacy with Kcne2+/+ dams; conversely these symptoms were elicited in Kcne2+/+ pups by surrogacy with Kcne2−/− dams. The data identify a critical thyrocyte K+ channel, provide a possible novel therapeutic avenue for thyroid disorders, and predict an endocrine component to some previously-identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.
The Na ؉ /I ؊ symporter (NIS) is a key plasma membrane protein that mediates active I ؊ uptake in the thyroid, lactating breast, and other tissues with an electrogenic stoichiometry of 2 Na ؉ per I ؊ . In the thyroid, NIS-mediated I ؊ uptake is the first step in the biosynthesis of the iodine-containing thyroid hormones, which are essential early in life for proper CNS development. In the lactating breast, NIS mediates the translocation of I ؊ to the milk, thus supplying this essential anion to the nursing newborn.
The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.