The complexity of multiphase flows in many engineering systems such as heat exchangers signify the need to develop new and advanced numerical models to analyse the interactions the working fluid and unwanted solid foulants. Fouling is present in a myriad of industrial and domestic processes and it has a negative impact on the economy and the environment. The mechanisms that govern non-isothermal solid-fluid flow through porous metal foam heat exchangers are complex and poorly understood. In this research, a coupled finite volume method (FVM) and macroscopic particle model (MPM) is developed and implemented in ANSYS Fluent to examine the transient evolution of a non-isothermal multiphase solid-fluid flow and the interaction between coupled interactions of solid particles, fluid, and porous media. The maximum particle temperature is dependent on the fluid and solid particle thermo-physical properties in addition to the temperature of the cylindrical ligaments of the porous media. The present results show that the smallest solid particles reach the highest temperatures in the porous heat exchanger and at low inlet velocities, the highest particle temperatures are realized. The results pertaining to maximum particle temperatures are prevalent in many industrial processes and acquiring knowledge of the maximum particle temperature serves as a steppingstone for comprehending complex multiphase solid-fluid flows such as the cohesiveness between the particles and the particle adhesion with the walls. The results of these studies could potentially be used in the future to optimize metal foam heat exchanger designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.