Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of 'herbal high' preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti-inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter- and dopamine receptor-regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low-frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
Activity of S-ASM is increased in alcohol-dependent patients and correlates with established biomarkers of excessive drinking. The increased S-ASM activity is implicated in alcohol-induced lipid alterations and might be relevant for the occurrence of alcohol-related disorders.
Lysosomes accumulate many drugs several fold higher compared to their extracellular concentration. This mechanism is believed to be responsible for many pharmacological effects. So far, uptake and release kinetics are largely unknown and interactions between concomitantly administered drugs often provoke mutual interference. In this study, we addressed these questions in a cell culture model. The molecular mechanism for lysosomal uptake kinetics was analyzed by live cell fluorescence microscopy in SY5Y cells using four drugs (amantadine, amitriptyline, cinnarizine, flavoxate) with different physicochemical properties. Drugs with higher lipophilicity accumulated more extensively within lysosomes, whereas a higher pK(a) value was associated with a more rapid uptake. The drug-induced displacement of LysoTracker was neither caused by elevation of intra-lysosomal pH, nor by increased lysosomal volume. We extended our previously developed numerical single cell model by introducing a dynamic feedback mechanism. The empirical data were in good agreement with the results obtained from the numerical model. The experimental data and results from the numerical model lead to the conclusion that intra-lysosomal accumulation of lipophilic xenobiotics enhances lysosomal membrane permeability. Manipulation of lysosomal membrane permeability might be useful to overcome, for example, multi-drug resistance by altering subcellular drug distribution.
CB1 and CB2 receptors are influenced via exogenous and endogenous cannabinoids. To date, little is known regarding changes in receptor expression and methylation in THC (tetrahydrocannabinol) dependence. Therefore, the CB1 and CB2 receptor mRNA expression levels and promoter methylation status in the peripheral blood cells of 77 subjects (36 with THC dependence, 21 cigarette smokers and 20 nonsmokers) were assessed by quantitative real-time PCR and methylation-specific PCR. There was a significant difference in CB1 receptor expression levels between the three groups (ANOVA, p < 0.001, d.f. = 2, F = 71.3). The mean promoter methylation (%) was significantly negatively correlated with CB1 receptor mRNA expression levels (Spearman’s rho: r = –0.37; p = 0.002). Using a mixed general linear model, it was demonstrated that the CB1 mRNA expression (as the dependent variable) was associated with the satisfaction with life scale (SWLS) (r = 0.101; T = 2.8; p = 0.007), craving (as measured with the VAS; r = –0.023; T = –2.3; p = 0.023) and the WHO-Assist Subscale for Cannabis consumption (r = –0.068; T = –2.4; p = 0.02). CB1 receptor expression levels and methylation status appear to be altered in subjects with THC dependence.
Impaired learning and memory performance is often found in aging as an early sign of dementia. It is associated with neuronal loss and reduced functioning of cholinergic networks. Here we present evidence that the neurokinin3 receptors (NK3-R) and their influence on acetylcholine (ACh) release may represent a crucial mechanism that underlies age-related deficits in learning and memory. Repeated pharmacological stimulation of NK3-R in aged rats was found to improve learning in the water maze and in object-place recognition. This treatment also enhanced in vivo acetylcholinergic activity in the frontal cortex, hippocampus, and amygdala but reduced NK3-R mRNA expression in the hippocampus. Furthermore, NK3-R agonism incurred a significantly higher increase in ACh levels in aged animals that showed superior learning than in those that were most deficient in learning. Our findings suggest that the induced activation of ACh, rather than basal ACh activity, is associated with superior learning in the aged. To test whether natural variation in NK3-R function also determines learning and memory performance in aged humans, we investigated 209 elderly patients with cognitive impairments. We found that of the 15 analyzed single single-nucleotide ploymorphism (SNPs) of the NK3-R-coding gene, TACR3, the rs2765 SNP predicted the degree of impairment of learning and memory in these patients. This relationship could be partially explained by a reduced right hippocampus volume in a subsample of 111 tested dementia patients. These data indicate the NK3-R as an important target to predict and improve learning and memory performance in the aged organism. senktide | in vivo microdialysis H umans exhibit a decline in cognitive capacity with age, which may progressively lead to dementia (1). Age-dependent morphological and physiological changes within the cholinergic system of the brain have been described as a major mechanism underlying impairments of learning and memory (2, 3). Numerous studies in aged rats have revealed that a degeneration of cholinergic neurons in the basal forebrain is associated with learning and >memory deficits (4). Likewise, the consistent correlations found between cholinergic degeneration and cognitive impairments indicate a high correspondence between acetylcholinergic activity and the magnitude of cognitive decline (4-6). This relationship has also been shown in patients with Alzheimer's disease (7,8).The neuropeptide neurokinins (NKs) substance P, neurokinin A, neurokinin B (NK-B), neuropeptide K, neuropeptide γ, and hemokinin 1 bind to the three known NK-receptors (NK3-R) (NK1-, NK2-, and NK3-R) with different degrees of affinity, whereby NK-B is the preferred ligand to NK3-R (9). NK3-Rs are widespread in the brain, including areas that are implicated in processes governing learning and memory such as the hippocampus, frontal cortex (FC), and medial septum (10, 11). There is a close interaction between NK3-R and the cholinergic system. NK3-R are localized on cholinacetyltransferase-containing neurons in ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.