Latency-associated transcript (LAT) sequences regulate herpes simplex virus (HSV) latency and reactivation from sensory neurons. We found a HSV-2 LAT-related microRNA (miRNA) designated miR-I in transfected and infected cells in vitro and in acutely and latently infected ganglia of guinea pigs in vivo. miR-I is also expressed in human sacral dorsal root ganglia latently infected with HSV-2. miR-I is expressed under the LAT promoter in vivo in infected sensory ganglia. We also predicted and identified a HSV-1 LAT exon-2 viral miRNA in a location similar to miR-I, implying a conserved mechanism in these closely related viruses. In transfected and infected cells, miR-I reduces expression of ICP34.5, a key viral neurovirulence factor. We hypothesize that miR-I may modulate the outcome of viral infection in the peripheral nervous system by functioning as a molecular switch for ICP34.5 expression.HSV ͉ latency-associated transcript ͉ latency ͉ reactivation ͉ human H erpes simplex virus 1 and 2 (HSV-1 and HSV-2) are closely related human herpes viruses. HSV-1 and HSV-2 establish lifelong incurable latency in and reactivate preferentially from trigeminal ganglia and dorsal root ganglia to cause oro-facial and genital herpes, respectively. Although infections are usually mild, these viruses can cause severe disease including encephalitis and neonatal herpes, and HSV-2 infection is a risk factor for HIV acquisition. The only readily detectable viral transcript during latency of both HSV-1 and HSV-2 is the noncoding latency-associated transcript (LAT), which is transcribed from within the long repeats of the viral genome ( Fig. 1) (1). A Ϸ8-kb primary LAT is spliced, yielding a stable Ϸ2-kb LAT intron (2). Deletion of the LAT promoter in both HSV-1 and HSV-2 reduces the efficiency of reactivation (3-5), and substitution of HSV-1 LAT for native HSV-2 LAT sequences confers an HSV-1 reactivation phenotype (6). The HSV-1 LAT is currently believed to act in part by increasing the establishment or maintenance of latency, likely via an effect on the survival of acutely infected neurons (7), which may be mediated by inhibition of apoptosis in infected neurons (8). The molecular function of HSV-2 LAT remains largely unknown.miRNAs are a family of 21Ϸ24-nt noncoding RNAs that regulate gene expression based on sequence similarity to their targets. Mammalian viruses including EBV, Kaposi's sarcoma-associated herpesvirus, human cytomegalovirus, and SV40 encode viral miRNAs (9). Viral encoded miRNAs were predicted for HSV-1 (10, 11) and also for HSV-2 (10). However, no miRNAs have been identified in HSV-2 or HSV-1 LAT sequences. Results HSV-2 LAT Exon 2 Encodes a miRNA.To find miRNAs within the HSV-2 LAT region, a plasmid containing the LAT sequence and its promoter (pSSK) and a mutant plasmid expressing LAT under control of the CMV-IE promoter (pCMV-SSK) were transfected into 293 cells. Small RNAs isolated from the transfected cells were cloned and sequenced. A 22-23-nt HSV-2 RNA sequence (designated HSV-2 miR-I) appeared at a frequenc...
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) establish latency and express the latency-associated transcript (LAT) preferentially in different murine sensory neuron populations, with most HSV-1 LAT expression in A5؉ neurons and most HSV-2 LAT expression in KH10 ؉ neurons. To study the mechanisms regulating the establishment of HSV latency in specific subtypes of neurons, cultured dissociated adult murine trigeminal ganglion (TG) neurons were assessed for relative permissiveness for productive infection. In contrast to that for neonatal TG, the relative distribution of A5 ؉ and KH10 ؉ neurons in cultured adult TG was similar to that seen in vivo. Productive infection with HSV was restricted, and only 45% of cultured neurons could be productively infected with either HSV-1 or HSV-2. A5؉ neurons supported productive infection with HSV-2 but were selectively nonpermissive for productive infection with HSV-1, a phenomenon that was not due to restricted viral entry or DNA uncoating, since HSV-1 expressing -galactosidase under the control of the neurofilament promoter was detected in ϳ90% of cultured neurons, with no preference for any neuronal subtype. Infection with HSV-1 reporter viruses expressing enhanced green fluorescent protein (EGFP) from immediate early (IE), early, and late gene promoters indicated that the block to productive infection occurred before IE gene expression. Trichostatin A treatment of quiescently infected neurons induced productive infection preferentially from non-A5 ؉ neurons, demonstrating that the nonpermissive neuronal subtype is also nonpermissive for reactivation. Thus, HSV-1 is capable of entering the majority of sensory neurons in vitro; productive infection occurs within a subset of these neurons; and this differential distribution of productive infection is determined at or before the expression of the viral IE genes.Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) replication at the periphery is accompanied by infection of neuronal axons and subsequent retrograde axonal transport to cell bodies of primary sensory neurons, where infection may follow either a productive or a latent pathway. For some neurons, lytic gene expression and progeny virus production are thought to result in cell death, while in other neurons, the productive cycle fails and the virus establishes a latent infection. The factors that determine whether HSV progresses through a productive cycle or establishes latency are not clear. It is suspected that different neuronal subtypes and/or the presence or absence of certain host factors may be critical in determining the outcome of infection.Primary sensory neurons are a diverse population of cells that are classified according to cellular morphology, physiological response properties, and patterns of gene expression. We have demonstrated previously that HSV-1 and HSV-2 preferentially establish latency and express the latency-associated transcript (LAT) in different populations of neurons, identified by the A5 and KH10 markers, within sensory ganglia (21,28,52). ...
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons.IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that become infected by HSV-1 and HSV-2 express stress hormone receptors and are responsive to hormone fluctuations. Our results show that autonomic neurons are more responsive to epinephrine and corticosterone than are sensory neurons, demonstrating that the autonomic nervous system plays a substantial role in HSV pathogenesis. Furthermore, these results suggest that stress responses have the potential to differentially impact HSV-1 and HSV-2 so as to produce divergent outcomes of infection.KEYWORDS herpes simplex virus, HSV-1, HSV-2, epinephrine, corticosterone, stress, reactivation
The herpes simplex virus 2 (HSV-2) viral microRNA (miRNA) designated miR-H6 is located upstream of the latency-associated transcript (LAT) promoter region on the strand opposite the LAT. Deletion of the LAT promoter and part of LAT exon 1 abolished HSV-2 miR-H6 expression in acutely and latently infected guinea pig dorsal root ganglia (DRG), suggesting that this region is needed both for the expression of LAT-encoded miRNAs and for miR-H6 expression in vivo. Relative to cells infected with a viral rescuant, miR-H6 expression was significantly reduced in cells infected with a mutant HSV-2 virus, NotPolyA, with an insertion of a simian virus (SV40) polyadenylation signal sequence between the LAT promoter and miR-H6 sequences. In addition, expression of miR-H6, but not LAT or viral DNA, was significantly reduced in both mouse trigeminal ganglia (TG) and guinea pig DRG latently infected with the NotPolyA mutant. Guinea pigs infected with NotPolyA experienced reduced neurological complications of acute infection relative to those infected with the rescuant, but the recurrence phenotype of the NotPolyA mutant was similar to those of its rescuant and wild-type HSV-2, indicating that reduction of miR-H6 expression is not by itself able to alter the establishment of latency for the wild-type virus or the recurrence phenotype. Furthermore, the mutation in NotPolyA did not affect the propensity of wild-type HSV-2 to establish latency in neurons positive for subtype marker KH10. In contrast to published reports regarding its HSV-1 homolog, HSV-2 miR-H6 did not affect ICP4 expression in transfected or infected cells. We hypothesize that viral miRNAs associated with LAT expression are likely to work collectively, contributing to the phenotype attributed to the LAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.