The volatiles responsible for the typical aroma of cheese are produced mainly by lipolytic and proteolytic pathways and by the metabolism of lactose, lactate, and citrate. The volatile profile of cheese is determined by gas chromatography (GC), which includes the extraction, separation, and detection of volatiles. A wide range of extraction techniques is available, and technological improvements have been developed in GC separation and detection that enhance our understanding of the role of individual key volatiles to cheese flavor. To date, for surface-ripened cheese, the main volatiles detected that contribute to flavor include acids, ketones, alcohols, and sulfur compounds. However, based on the limited number of studies undertaken and the approaches used, it appears that a significant degree of bias possibly exists that may have over-or underestimated the impact of specific chemical classes involved in the flavor of these types of cheese.
Fermented foods, in particular, surface-ripened cheese, represent a model to explain the metabolic interactions which regulate microbial succession in complex environments. This study explains the role of individual species in a heterogeneous microbial environment, i.e., the exterior of surface-ripened cheese. Through whole-metagenome shotgun sequencing, it was possible to investigate the metabolic potential of the resident microorganisms and show how variations in the microbial populations influence important aspects of cheese ripening, especially flavor development. Overall, in addition to providing fundamental insights, this research has considerable industrial relevance relating to the production of fermented food with specific qualities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.