There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA—African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Superantigens (SAGs) are a class of immunostimulatory and disease-causing proteins of bacterial or viral origin with the ability to activate large fractions (5-20%) of the T cell population. Activation requires simultaneous interaction of the SAG with the V beta domain of the T cell receptor (TCR) and with major histocompatibility complex (MHC) class II molecules on the surface of an antigen-presenting cell. Recent advances in knowledge of the three-dimensional structure of bacterial SAGs, and of their complexes with MHC class II molecules and the TCR beta chain, provide a framework for understanding the molecular basis of T cell activation by these potent mitogens. These structures along with those of TCR-peptide/MHC complexes reveal how SAGs circumvent the normal mechanism for T cell activation by peptide/MHC and how they stimulate T cells expressing TCR beta chains from a number of different families, resulting in polyclonal T cell activation. The crystal structures also provide insights into the basis for the specificity of different SAGs for particular TCR beta chains, and for the observed influence of the TCR alpha chain on SAG reactivity. These studies open the way to the design of SAG variants with altered binding properties for TCR and MHC for use as tools in dissecting structure-activity relationships in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.