H3K27me3 is deposited at promoters by the preferential association of Polycomb repressive complex 2 (PRC2) with CpG-rich DNA elements regulating development by repressing gene transcription. H3K27 is also present in mono- and dimethylated states; however, the functional roles of H3K27me1 and H3K27me2 deposition remain poorly characterized. Here, we show that PRC2 activity is not only associated with H3K27me3 but also regulates all forms of H3K27 methylation in a spatially defined manner, contributing to different genomic functions in mouse embryonic stem cells. H3K27me1 accumulates within transcribed genes, promotes transcription, and is regulated by Setd2-dependent H3K36me3 deposition. Contrarily, H3K27me2 is present on approximately 70% of total histone H3 and is distributed in large chromatin domains, exerting protective functions by preventing firing of non-cell-type-specific enhancers. Considering that only 5%-10% of deregulated genes in PRC2-deficient cells are direct H3K27me3 targets, our data support an active role for all H3K27 methylated forms in regulating transcription and determining cell identity.
O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) activity is essential for embryonic stem cell (ESC) viability and mouse development. Ogt is present both in the cytoplasm and the nucleus of different cell types and catalyzes serine and threonine glycosylation. We have characterized the biochemical features of nuclear Ogt and identified the ten-eleven translocation (TET) proteins Tet1 and Tet2 as stable partners of Ogt in the nucleus of ESCs. We show at a genome-wide level that Ogt preferentially associates with Tet1 to genes promoters in close proximity of CpG-rich transcription start sites. These regions are characterized by low levels of DNA modification, suggesting a link between Tet1 and Ogt activities in regulating CpG island methylation. Finally, we show that Tet1 is required for binding of Ogt to chromatin affecting Tet1 activity. Taken together, our data characterize how O-GlcNAcylation is recruited to chromatin and interacts with the activity of 5-methylcytosine hydroxylases.
Summary Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) control cell identity by establishing facultative heterochromatin repressive domains at common sets of target genes. PRC1, which deposits H2Aub1 through the E3 ligases RING1A/B, forms six biochemically distinct subcomplexes depending on the assembled PCGF protein (PCGF1–PCGF6); however, it is yet unclear whether these subcomplexes have also specific activities. Here we show that PCGF1 and PCGF2 largely compensate for each other, while other PCGF proteins have high levels of specificity for distinct target genes. PCGF2 associates with transcription repression, whereas PCGF3 and PCGF6 associate with actively transcribed genes. Notably, PCGF3 and PCGF6 complexes can assemble and be recruited to several active sites independently of RING1A/B activity (therefore, of PRC1). For chromatin recruitment, the PCGF6 complex requires the combinatorial activities of its MGA-MAX and E2F6-DP1 subunits, while PCGF3 requires an interaction with the USF1 DNA binding transcription factor.
CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1-expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve-to-memory dynamic transition of these CD1 selfreactive T cells remain largely unknown. By screening libraries of T-cell clones, generated from CD4 1 or CD4 À CD8 À double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self-reactive T cells is unexpectedly high in both T-cell subsets, in the range of 1/10-1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T-cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self-reactive T cells are naïve at birth and undergo an age-dependent increase in the memory compartment, suggesting a naïve/ memory adaptive-like population dynamics. CD1 self-reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self-lipid T-cell response in humans and clarify the basic parameters of the lipid-specific T-cell physiology. IntroductionConventional TCR-a/b 1 T lymphocytes recognize peptides presented by MHC molecules and are key players in the adaptive immune response. Thymic selection maximizes the generation of conventional mature T-cell repertoires specific for foreign Ags while minimizing autoreactivity [1]. A key feature of the adaptive immune response is that newly generated conventional T cells are naïve and acquire an effector/memory phenotype upon Ag encounter [2].There exists also an unconventional population of TCR-a/b 1 T lymphocytes that are restricted for CD1 molecules and recognize self-and microbial lipid antigens [3]. CD1 are non-polymorphic MHC class I-like molecules classified into three groups based on the sequence homology: group 1 comprises CD1a, CD1b and CD1c; group 2 CD1d; group 3 CD1e [4]. The best characterized CD1-restricted T cells are the CD1d-restricted invariant Natural Killer à These authors contributed equally to this work. 602Frontline T (iNKT) cells that express, in humans, an invariant Va24-Ja18 TCR paired with Vb11, together with NK-cell receptors [5][6][7]. iNKT cells can be unequivocally identify through their peculiar TCR: they are overly autoreactive, display an innate-like (constitutive) effector/ memory phenotype already at birth [8], unlike conventional T cells, and are divided in two main and functionally distinct CD4 1 and CD4 À CD8 À double negative (DN) subsets [9,10].A second type of CD1-restricted T lymphocytes does not express the invariant TCR and is mainly restricted for group 1 CD1 [3]. Because of the lack of specific markers, this T-cell type has been investigated using sporadically isolated T-cell clones, which provided fundamental hints on the microbial lipids and lipopeptides Ags recognized by these T cells...
The Polycomb repressor complex 2 (PRC2) is composed of the core subunits Ezh1/2, Suz12, and Eed, and it mediates all di- and tri-methylation of histone H3 at lysine 27 in higher eukaryotes. However, little is known about how the catalytic activity of PRC2 is regulated to demarcate H3K27me2 and H3K27me3 domains across the genome. To address this, we mapped the endogenous interactomes of Ezh2 and Suz12 in embryonic stem cells (ESCs), and we combined this with a functional screen for H3K27 methylation marks. We found that Nsd1-mediated H3K36me2 co-locates with H3K27me2, and its loss leads to genome-wide expansion of H3K27me3. These increases in H3K27me3 occurred at PRC2/PRC1 target genes and as de novo accumulation within what were previously broad H3K27me2 domains. Our data support a model in which Nsd1 is a key modulator of PRC2 function required for regulating the demarcation of genome-wide H3K27me2 and H3K27me3 domains in ESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.