A new heteronuclear decoupling sequence for solid-state NMR and magic angle spinning faster than 60 kHz was recently introduced [Simion et al., J. Chem. Phys. 157, 014202 (2022)]. It was dubbed ROtor-Synchronized Phase-Alternated Cycles (ROSPAC), and it offers robustness for a large range of chemical shifts and low radio-frequency (RF) powers and is almost independent of the radio-frequency power. Here, we theoretically explore the robustness of the ROSPAC sequence toward 1H offset and RF field inhomogeneities, as well as the spacing effect of the π pulses on the decoupling efficiency. We use a generalized theoretical framework based on the Floquet theory to assess these parameters. The optimum decoupling conditions, where the magnitude of the second-order cross-terms and first-order resonance conditions are small, were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.