Activation of carotid chemoreceptors with intravenous potassium cyanide (KCN) produces increases in arterial pressure, bradycardia, and tachypnea. In the present study, we activated carotid chemoreceptors with KCN and the neurotransmission of the chemoreceptor reflex into the commissural nucleus tractus solitarii (NTS) was blocked with phosphonovaleric acid (AP-5), an N-methyl-D-aspartate (NMDA)-selective antagonist. The aim of this study was to evaluate the involvement of NMDA receptors in the cardiovascular and respiratory responses produced by chemoreceptor activation in unanesthetized rats. The pressor response to KCN was not changed after microinjection of three different doses of AP-5 into the NTS, whereas the bradycardic response was reduced in a dose-dependent manner. The increase in respiratory frequency in response to carotid chemoreceptor activation was also not affected by AP-5 microinjected into the NTS. The data indicate that the activation of the cardiovagal component of the chemoreflex in the commissural NTS is mediated by NMDA receptors, whereas pressor and ventilatory responses are not.
Cardiovascular responses to chemoreflex activation by potassium cyanide (KCN, 20 μg/rat iv) were analyzed before and after the blockade of ionotropic or metabotropic receptors into the nucleus of the solitary tract (NTS) of awake rats. Microinjection of ionotropic antagonists [6,7-dinitroquinoxaline-2,3-dione or kynurenic acid (Kyn)] into the lateral commissural NTS (NTSlat), the midline commissural NTS (NTSmid), or into both (NTSlat+mid), produced a significant increase in basal mean arterial pressure, and the pressor response to chemoreflex activation was only partially reduced, whereas microinjection of Kyn into the NTSmid produced no changes in the pressor response to the chemoreflex. The bradycardic response to chemoreflex activation was abolished by microinjection of Kyn into the NTSlat or into NTSlat+mid but not by Kyn microinjection into the NTSmid. Microinjection of α-methyl-4-carboxyphenylglycine, a metabotropic receptor antagonist, into the NTSlat or NTSmid produced no changes in baseline mean arterial pressure or heart rate or in the chemoreflex responses. These results indicate that 1) the processing of the parasympathetic component (bradycardia) of the chemoreflex seems to be restricted to the NTSlat and was blocked by ionotropic antagonists and 2) the pressor response of the chemoreflex was only partially reduced by microinjection of ionotropic antagonists and not affected by injection of metabotropic antagonists into the NTSlat or NTSmid or into NTSlat+mid in awake rats.
The nucleus tractus solitarii (NTS) receives afferent projections from the arterial baroreceptors, carotid chemoreceptors and cardiopulmonary receptors and as a function of this information produces autonomic adjustments in order to maintain arterial blood pressure within a narrow range of variation. The activation of each of these cardiovascular afferents produces a specific autonomic response by the excitation of neuronal projections from the NTS to the ventrolateral areas of the medulla (nucleus ambiguus, caudal and rostral ventrolateral medulla). The neurotransmitters at the NTS level as well as the excitatory amino acid (EAA) receptors involved in the processing of the autonomic responses in the NTS, although extensively studied, remain to be completely elucidated. In the present review we discuss the role of the EAA L-glutamate and its different receptor subtypes in the processing of the cardiovascular reflexes in the NTS. The data presented in this review related to the neurotransmission in the NTS are based on experimental evidence obtained in our laboratory in unanesthetized rats. The two major conclusions of the present review are that a) the excitation of the cardiovagal component by cardiovascular reflex activation (chemo-and Bezold-Jarisch reflexes) or by L-glutamate microinjection into the NTS is mediated by N-methyl-D-aspartate (NMDA) receptors, and b) the sympatho-excitatory component of the chemoreflex and the pressor response to L-glutamate microinjected into the NTS are not affected by an NMDA receptor antagonist, suggesting that the sympatho-excitatory component of these responses is mediated by non-NMDA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.