In premature eyes with or without mild retinopathy of prematurity, anterior segment anatomy is slightly different and they have more higher-order corneal aberrations compared to the eyes of term-born children.
ObjectiveThe purpose of this study was to evaluate the possible structural changes of the macula in patients with unilateral amblyopia using optical coherence tomography (OCT) image segmentation.Patients and Methods38 consecutive patients (16 male; mean age 32.4±17.6 years; range 6–67 years) with unilateral amblyopia were involved in this study. OCT examinations were performed with a time-domain OCT device, and a custom-built OCT image analysis software (OCTRIMA) was used for OCT image segmentation. The axial length (AL) was measured by a LenStar LS 900 device. Macular layer thickness, AL and manifest spherical equivalent refraction (MRSE) of the amblyopic eye were compared to that of the fellow eye. We studied if the type of amblyopia (strabismus without anisometropia, anisometropia without strabismus, strabismus with anisometropia) had any influence on macular layer thickness values.ResultsThere was significant difference between the amblyopic and fellow eyes in MRSE and AL in all subgroups. Comparing the amblyopic and fellow eyes, we found a statistically significant difference only in the thickness of the outer nuclear layer in the central region using linear mixed model analysis keeping AL and age under control (p = 0.032). There was no significant difference in interocular difference in the thickness of any macular layers between the subgroups with one-way between-groups ANCOVA while statistically controlling for interocular difference in AL and age.ConclusionsAccording to our results there are subtle changes in amblyopic eyes affecting the outer nuclear layer of the fovea suggesting the possible involvement of the photoreceptors. However, further studies are warranted to support this hypothesis.
PurposeThe aim of this study was to evaluate the effect of axial length (AL) on the thickness of intraretinal layers in the macula using optical coherence tomography (OCT) image analysis.MethodsFifty three randomly selected eyes of 53 healthy subjects were recruited for this study. The median age of the participants was 29 years (range: 6 to 67 years). AL was measured for each eye using a Lenstar LS 900 device. OCT imaging of the macula was also performed by Stratus OCT. OCTRIMA software was used to process the raw OCT scans and to determine the weighted mean thickness of 6 intraretinal layers and the total retina. Partial correlation test was performed to assess the correlation between the AL and the thickness values.ResultsTotal retinal thickness showed moderate negative correlation with AL (r = -0.378, p = 0.0007), while no correlation was observed between the thickness of the retinal nerve fiber layer (RNFL), ganglion cell layer (GCC), retinal pigment epithelium (RPE) and AL. Moderate negative correlation was observed also between the thickness of the ganglion cell layer and inner plexiform layer complex (GCL+IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL) and AL which were more pronounced in the peripheral ring (r = -0.402, p = 0.004; r = -0.429, p = 0.002; r = -0.360, p = 0.01; r = -0.448, p = 0.001).ConclusionsOur results have shown that the thickness of the nuclear layers and the total retina is correlated with AL. The reason underlying this could be the lateral stretching capability of these layers; however, further research is warranted to prove this theory. Our results suggest that the effect of AL on retinal layers should be taken into account in future studies.
A 5.5-mm capsulotomy created with a femtosecond laser is associated with less IOL tilt and therefore may be superior to a 6.0-mm capsulotomy when implanting a single-optic accommodating IOL.
The data showed that biometric characteristics of the eyes with unilateral congenital cataract differ from the opposite normal eye before the cataract surgery. It is essential to use this biometric data in intraocular lens power calculation and to take them into account in long-term care when screening for secondary glaucoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.