Fifty-four multiple sclerosis (MS) patients were randomly assigned to exercise (EX) or nonexercise (NEX) groups. Before and after 15 weeks of aerobic training, aspects of fitness including maximal aerobic capacity (VO2max), isometric strength, body composition, and blood lipids were measured. Daily activities, mood, fatigue, and disease status were measured by the Profile of Mood States (POMS), Sickness Impact Profile (SIP), Fatigue Severity Scale (FSS), and neurological examination. Training consisted of 3 x 40-minute sessions per week of combined arm and leg ergometry. Expanded Disability Status Scale (EDSS) scores were unchanged, except for improved bowel and bladder function in the EX group. Compared with baseline, the EX group demonstrated significant increases in VO2max, upper and lower extremity strength, and significant decreases in skinfolds, triglyceride, and very-low-density lipoprotein (VLDL). For the EX group, POMS depression and anger scores were significantly reduced at weeks 5 and 10, and fatigue was reduced at week 10. The EX group improved significantly on all components of the physical dimension of the SIP and showed significant improvements for social interaction, emotional behavior, home management, total SIP score, and recreation and past times. No changes were observed for EX or NEX groups on the FSS. Exercise training resulted in improved fitness and had a positive impact on factors related to quality of life.
Chronic Fatigue Syndrome (CFS) is characterized by debilitating fatigue, often accompanied by widespread muscle pain that meets criteria for Fibromyalgia Syndrome (FMS). Symptoms become markedly worse after exercise. Previous studies implicated dysregulation of the sympathetic nervous system (SNS), and immune system (IS) in CFS and FMS. We recently demonstrated that Acid Sensing Ion Channel (likely ASIC3), purinergic type 2X receptors (likely P2X4 and P2X5), and the transient receptor potential vanilloid type 1 (TRPV1) are molecular receptors in mouse sensory neurons detecting metabolites that cause acute muscle pain and possibly muscle fatigue. These molecular receptors are found on human leukocytes along with SNS and IS genes. Real-time, quantitative PCR showed that 19 CFS patients had lower expression of β-2 adrenergic receptors but otherwise did not differ from 16 controls before exercise. After a sustained moderate exercise test, CFS patients showed greater increases than controls in gene expression for metabolite detecting receptors ASIC3, P2X4 and P2X5, for SNS receptors α-2A, β-1, β-2 and COMT, and IS genes for IL10 and TLR4 lasting from 0.5-48 hours (P< .05). These increases were also seen in the CFS subgroup with comorbid FMS and were highly correlated with symptoms of physical fatigue, mental fatigue and pain. These new findings suggest dysregulation of metabolite detecting receptors as well as SNS and IS in CFS and CFS-FMS.Perspective-Muscle fatigue and pain are major symptoms of CFS. Following moderate exercise, CFS and CFS-FMS patients show enhanced gene expression for receptors detecting muscle metabolites and for SNS and IS, which correlate with these symptoms. These findings suggest possible new causes, points for intervention and objective biomarkers for these disorders.
For many years, patients with multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system, have been advised to avoid exercise. MS is believed to be autoimmune in origin, mediated by activated T cells which penetrate the blood-brain barrier and attack myelin. The pathophysiology, with respect to function is an impairment of saltatory conduction, specifically, slowing of conduction speed and/or conduction block. Symptoms can temporarily worsen on exposure to heat or during physical exercise. Exercise programmes must be designed to activate working muscles but avoid overload that results in conduction block. Fatigue, often severe, affects about 85% of MS patients and, along with motor and sensory symptoms, results in decreased mobility and reduced quality of life. Physical activity and recreation are reduced in patients with MS. Before developing recommendations, physical activity patterns and the physical effects of MS should be assessed in individual patients. Patients may then be functionally classified. Physical activity can also be classified in a pyramid structure, with the most basic functions forming the base and the most integrated functions on top. The muscular fitness pyramid progresses through passive range of motion, active resistive, specific strengthening and integrated strength exercises Overall physical activity may be increased according to functional level by performing activities of daily living, incorporating inefficiencies into daily living, pursuing more active recreation and eventually developing a structured exercise programme. The importance of the proper exercise environment, balance and coordination issues and factors related to adherence are discussed.
Objectives To determine mRNA expression differences in genes involved in signaling and modulating sensory fatigue, and muscle pain in patients with Chronic Fatigue Syndrome (CFS) and Fibromyalgia Syndrome (FM) at baseline, and following moderate exercise. Design Forty eight Patients with CFS-only, or CFS with comorbid FM, 18 Patients with FM that did not meet criteria for CFS, and 49 healthy Controls underwent moderate exercise (25 minutes at 70% maximum age predicted heart-rate). Visual-analogue measures of fatigue and pain were taken before, during, and after exercise. Blood samples were taken before, and 0.5, 8, 24, and 48 hours after exercise. Leukocytes were immediately isolated from blood, number coded for blind processing and analyses, and flash frozen. Using real-time, quantitative PCR, the amount of mRNA for 13 genes (relative to control genes) involved in sensory, adrenergic, and immune functions was compared between groups at baseline, and following exercise. Changes in amounts of mRNA were correlated with behavioral measures, and functional clinical assessments. Results No gene expression changes occurred following exercise in Controls. In 71% of CFS patients, moderate exercise increased most sensory and adrenergic receptor’s and one cytokine gene’s transcription for 48 hours. These post-exercise increases correlated with behavioral measures of fatigue and pain. In contrast, for the other 29% of CFS patients, adrenergic α-2A receptor’s transcription was decreased at all time points after exercise; other genes were not altered. History of orthostatic intolerance was significantly more common in the α-2A decrease subgroup. FM only patients showed no post-exercise alterations in gene expression, but their pre-exercise baseline mRNA for two sensory ion channels and one cytokine were significantly higher than Controls. Conclusions At least two subgroups of CFS patients can be identified by gene expression changes following exercise. The larger subgroup showed increases in mRNA for sensory and adrenergic receptors and a cytokine. The smaller subgroup contained most of the CFS patients with orthostatic intolerance, showed no post-exercise increases in any gene, and was defined by decreases in mRNA for α-2A. FM only patients can be identified by baseline increases in 3 genes. Post-exercise increases for 4 genes meet published criteria as an objective biomarker for CFS, and could be useful in guiding treatment selection for different subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.